Week 4

Grammars Pt. 2

Anakin

Outline

Context Free Grammars

Pushdown Automata

Section 1

Context Free Grammars

Quick Review

$$
\left\{0^{n} 1^{n} \mid n \geq 0\right\} \text { is generated by }
$$

Quick Review

$$
\left\{0^{n} 1^{n} \mid n \geq 0\right\} \text { is generated by }
$$

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \varepsilon
\end{aligned}
$$

Quick Review

$$
\begin{gathered}
\left\{0^{n} 1^{n} \mid n \geq 0\right\} \text { is generated by } \\
A \rightarrow 0 A 1 \mid \varepsilon
\end{gathered}
$$

Determining If Strings Are In A CFL

Determining If Strings Are In A CFL

$$
A \Rightarrow 0 A 1 \Rightarrow 00 A 11 \Rightarrow 000 A 111 \Rightarrow 000 B 111 \Rightarrow 000 \varepsilon 111 \Rightarrow 000111
$$

Comparison with Regular Languages

- CFGs define a language much like Regex/DFAs/NFAs

Comparison with Regular Languages

- CFGs define a language much like Regex/DFAs/NFAs
- Regex / DFAs / NFAs \leftrightarrow Regular Languages
- Context Free Grammars \leftrightarrow Context Free Languages

Questions!

This is going to be a review of a ton of things we've talked about since automata are coming back

Questions!

This is going to be a review of a ton of things we've talked about since automata are coming back

- Create a CFG and NFA / DFA to recognize $\{w \mid$ the length of w is odd $\}$
- Create a CFG to recognize $\{w \mid$ the length of w is odd and the middle character is 0$\}$

Answers

Create a CFG and NFA / DFA to recognize $\{w \mid$ the length of w is odd $\}$

$$
\begin{aligned}
& S \rightarrow 1 E \mid O E \\
& E \rightarrow \varepsilon|0 S| 1 S
\end{aligned}
$$

Answers

Create a CFG to recognize
$\{w \mid$ the length of w is odd and the middle character is 0$\}$

$$
\begin{aligned}
& S \rightarrow 0 \mid T S T \\
& T \rightarrow 0 \mid 1
\end{aligned}
$$

Section 2

Pushdown Automata

Automata for CFLs

- Regex \leftrightarrow DFAs / NFAs

Automata for CFLs

- Regex \leftrightarrow DFAs / NFAs
- Context Free Grammars \leftrightarrow ???

Automata for CFLs

- Regex \leftrightarrow DFAs / NFAs
- Context Free Grammars \leftrightarrow Pushdown Automata

State Machines With an Upgrade

State Machines With an Upgrade

What is a Stack??

- Think about stacking objects (books, plates, whatever)

What is a Stack??

- Think about stacking objects (books, plates, whatever)
- You can add items to the top only and lose immediate access to anything below it

What is a Stack??

- Think about stacking objects (books, plates, whatever)
- You can add items to the top only and lose immediate access to anything below it
- If you want to get an item from your stack, you have to pick up the top item first and then discard it

Stack

2
Push
\square

Stack

Stack

Stack

Stack

Stack

Stack

Stack

What does this get you?

- You remember DFAs and NFAs???

What does this get you?

- You remember DFAs and NFAs???
- We could remember only the current state

What does this get you?

- You remember DFAs and NFAs???
- We could remember only the current state
- The stack gives us a sort of memory

What does this get you?

- You remember DFAs and NFAs???
- We could remember only the current state
- The stack gives us a sort of memory
- NFA + Stack \leftrightarrow Context Free Grammar

DFA

Σ

PDA for $\left\{0^{n} 1^{n}, n \geq 0\right\}$

PDA for $\left\{0^{n} 1^{n}, n \geq 0\right\}$

$0011 \stackrel{?}{\in}\left\{0^{n} 1^{n}, n \geq 0\right\}$

Σ

$0011 \stackrel{?}{\in}\left\{0^{n} 1^{n}, n \geq 0\right\}$

Σ

$0011 \stackrel{\ell}{\in}\left\{0^{n} 1^{n}, n \geq 0\right\}$

Σ
$0011 \stackrel{?}{\in}\left\{0^{n} 1^{n}, n \geq 0\right\}$

Σ

Questions?

Questions!

- Come up with a CFG and a PDA to match the following language

$$
\{w \mid w \text { has as many a's as b's }\}
$$

Answers

Come up with a CFG and a PDA to match the following language

$$
\{w \mid w \text { has as many a's as b's }\}
$$

$$
S \rightarrow \varepsilon|S \mathrm{ab}| \mathrm{a} S \mathrm{~b} \mid \mathrm{a} S \mathrm{~b} S
$$

Answers

Come up with a CFG and a PDA to match the following language
$\{w \mid w$ has as many a's as b's $\}$

