Week 4 Grammars Pt. 2

Anakin

Outline

Context Free Grammars

Pushdown Automata

Section 1

Context Free Grammars

Quick Review

$$\left\{ \left. \mathsf{0}^{n} \mathsf{1}^{n} \right| n \geq 0 \right\}$$
 is generated by

Quick Review

$$\left\{ \left. \mathbf{0}^{n}\mathbf{1}^{n} \right| n \geq 0 \right\}$$
 is generated by

 $\begin{array}{rrr} A & \rightarrow & 0A1 \\ A & \rightarrow & B \\ B & \rightarrow & \varepsilon \end{array}$

Quick Review

$$\left\{ \left. \mathsf{0}^{n}\mathsf{1}^{n} \right| n \geq 0 \right\}$$
 is generated by

$A \rightarrow 0A1 \mid \varepsilon$

Determining If Strings Are In A CFL

Determining If Strings Are In A CFL

$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\varepsilon 111 \Rightarrow 000111$

Comparison with Regular Languages

• CFGs define a language much like Regex/DFAs/NFAs

Comparison with Regular Languages

- CFGs define a language much like Regex/DFAs/NFAs
- Regex / DFAs / NFAs \leftrightarrow Regular Languages
- Context Free Grammars \leftrightarrow Context Free Languages

This is going to be a review of a ton of things we've talked about since automata are coming back

Questions!

This is going to be a review of a ton of things we've talked about since automata are coming back

- Create a CFG and NFA / DFA to recognize { w | the length of w is odd }
- Create a CFG to recognize
 - $\{w \mid \text{the length of } w \text{ is odd and the middle character is } 0\}$

Answers

Create a CFG and NFA / DFA to recognize $\{ w \mid \text{the length of } w \text{ is odd } \}$

$$S \rightarrow 1E \mid 0E$$
$$E \rightarrow \varepsilon \mid 0S \mid 1S$$

Answers

Create a CFG to recognize

 $\{ w \mid \text{the length of } w \text{ is odd and the middle character is } 0 \}$

$$S \rightarrow 0 \mid TST$$
$$T \rightarrow 0 \mid 1$$

Section 2

Pushdown Automata

Automata for CFLs

• Regex \leftrightarrow DFAs / NFAs

Automata for CFLs

- Regex \leftrightarrow DFAs / NFAs
- Context Free Grammars \leftrightarrow ???

Automata for CFLs

- Regex \leftrightarrow DFAs / NFAs
- Context Free Grammars \leftrightarrow $\mathbf{Pushdown}$ $\mathbf{Automata}$

State Machines With an Upgrade

State Machines With an Upgrade

What is a Stack??

• Think about stacking objects (books, plates, whatever)

What is a Stack??

- Think about stacking objects (books, plates, whatever)
- You can add items to the **top only** and lose immediate access to anything below it

What is a Stack??

- Think about stacking objects (books, plates, whatever)
- You can add items to the **top only** and lose immediate access to anything below it
- If you want to get an item from your stack, you have to pick up the **top item first** and then discard it

• You remember DFAs and NFAs???

- You remember DFAs and NFAs???
- We could remember only the **current state**

- You remember DFAs and NFAs???
- We could remember only the **current state**
- The stack gives us a sort of **memory**

- You remember DFAs and NFAs???
- We could remember only the **current state**
- The stack gives us a sort of **memory**
- NFA + Stack \leftrightarrow Context Free Grammar

PDA for { $0^n 1^n$, $n \ge 0$ }

Questions?

Questions!

• Come up with a CFG and a PDA to match the following language

 $\{ w \mid w \text{ has as many a's as b's } \}$

Answers

Come up with a CFG and a PDA to match the following language

 $\{ w \mid w \text{ has as many } a's as b's \}$

$S \ \rightarrow \ \varepsilon \mid S \texttt{ab} \mid \texttt{aSb} \mid \texttt{aSb} \mid \texttt{aSb}$

Answers

Come up with a CFG and a PDA to match the following language

 $\{ w \mid w \text{ has as many } a's as b's \}$

