
Week 7

Turing Machines, Decidability, & Complexity

Sam Ruggerio



Outline

Turing Machines

Decision Problems

Complexity



Section 1

Turing Machines



Turing Machines

• Turing Machines were conceived by Alan Turing in 1936.
• They define the fundamental basis for all models of computation.
• They aren’t necessarily fast, but tell us what we can compute with

computers.



Turing Machines

A Turing Machine is made of a few parts:
• A infinitely long, 1D tape of symbols, with blanks for unused cells.
• A state machine, which tells what the Turing Machine should do

(think: DFA/NFA)
• The Read/Write head that points to a position on the tape.
• The state machine has actions of what to do upon reaching a

particular state (read, write, move left, move right, accept, reject)
• Transitions between states depending on what the Turing Machine

read.



Turing Machine



Turing Machine



Turing Machine



Turing Machine



Turing Machine



Formal Definitions

• Let the Turing Machine M be defined by (Γ,Σ, Q, δ)

• Γ is the tape alphabet, the set of symbols that can appear on the
tape. The blank symbol is included: ϵ ∈ Γ

• Σ is the input alphabet, the set of symbols that can initially appear
on the tape: Σ ⊆ Γ \ {ϵ}
• Q is the set of states. Three states are required to be in Q: start,

accept, reject. Let Q′ be Q without accept/reject
• δ is the transition function: Q′ × Γ→ Q× Γ× {−1,+1}



Tedium

• Turing machines are as fundamental as you can get w.r.t
computation.
• As such, the programs are very long and complex for simple

problems.
• Alonzo Church and Turing effectively proved that any problem that

can be decided, can be decided with a Turing Machine
(Church-Turing Thesis).



Questions?



Section 2

Decision Problems



Decision Problems

Decision problems are strictly true and false queries:

"What is the index of an element less than k?"
vs.

"Does this array contain a value less than k?"



Decision Problems

Given an oracle, SmallestIDecision, which tells you whether an
array has an element less than k, we can figure out which index that
value is stored:

SmallestI(A[1..n], k):
ind ← 0
for i← 1 to n+ 1:

if SmallestIDecision(A[i..n], k) = False:
ind ← i− 1
break

return ind



Questions!

Try solving using the decision problem, without comparing characters.
Specifically, you should only solve these by checking if something equals
True or False. (No, ’1’ does not typecheck to True)

1. How many 0s are in a string w?
Does the string w have k 0s: DecisionKZero(w, k)

2. How many pairs of 1s are in a string w?
Is the number of 1s in a string w even? Decision1Even(w)



Questions!

CountZeros(w[1..n]):
for k ← 1 to n:

if DecisionKZero(w, k) = True:
return k

Count1Pairs(w[1..n]):
c← 0
for i← 1 to n:

if Decision1Even(w[i]) = False:
c← c+ 0.5

return ⌊c⌋



Decision Languages

If a problem only has a true or false response, we can define a language
of that problem:

SAT = {w ∈ Σ∗ | w is a satisfiable boolean formula}

SORT = {w ∈ Σ∗ | w defines a sorted integer array}

HALT = {w ∈ Σ∗ | w is a program that halts}



Turing Machines & Problems

For any Turing machine M and language L:
• We say that M recognizes/accepts L if for any input w ∈ L, M

accepts w.
▶ It’s fine for M to never stop on inputs that aren’t in L, but it must

accept every element of L.
• M decides L if for any input w, M accepts if w ∈ L and rejects

otherwise.



Turing Machines & Languages

For any Turing machine M and input w:
• Accept(M): the language of all inputs w where M accepts.
• Reject(M): the language of all inputs w where M rejects.
• Halt(M): the language of all inputs w where M gives a response

(halts).
• Diverge(M): the language of all inputs w where M never halts.



Code is Data

• We can represent a Turing machine as a string encoding.
(Enumerate the states, what state to go to, map the symbols to
binary, etc.)
• The input to a Turing machine can be a Turing machine itself!

(Think: programs running programs/VMs/Compilers/etc.)
• We use M to say "the Turing Machine M", and ⟨M⟩ to say "the

encoding of Turing Machine M"



Simulating Machines

• Assume we have a Turing Machine U designed to simulate another
Turing machine M on a given input w.
• This instance is denoted like so: ⟨M,w⟩
• The language of machines that accept their input is defined as:

ACCEPT = {⟨M,w⟩ |M accepts w}



Halting Problem

• We cannot decide (accepting/rejecting all inputs) whether a Turing
program will halt.
• This result was proven by Turing in his original paper.
• Walkthrough of this proof in a future meeting!



Questions?



Questions!

Sanity Check:
1. Is the language following language recognizable by a Turing

Machine: HALT = {⟨M,w⟩|M halts on input w}
2. Can ⟨M⟩ be an input to Turing Machine M?
3. Can M decide what will happen with itself? (i.e. ⟨M, ⟨M⟩⟩)



Section 3

Complexity



Runtime

Turing machines give us metrics to measure algorithm runtime. If given
an input of length n:

1. How many steps does the Turing Machine take until it halts?
(Runtime)

2. How many cells on the tape does the Turing Machine use? (Space)



Complexity Classes

• Define P to be the set of decision problems that are decidable in
polynomial time.
• Define NP to be the set of decision problems that are decidable in

polynomial time via non-determinism.
• Define EXP to be the set of decision problems that are decidable in

exponential time.
• Define NEXP to be the set of decision problems that are decidable

in exponential time via non-determinism.



Complexity Classes

What’s above NEXP?
• Define R to be the set of decision problems that are decidable.
• Define RE to be the set of decision problems that are recursively

enumerable/recognizable. (Halts, if the answer is Yes).



Complexity Classes

What about space?
• Define PSPACE to be the set of decision problems that are

decidable in polynomial space.
• Define EXPSPACE to be the set of decision problems that are

decidable in exponential space.



Relations

We know that P and NP are subsets of PSPACE, but are any of these
sets equal?
Is PSPACE = EXPTIME?
Is EXPTIME = NEXPTIME = EXPSPACE?



Complexity Subsets



Questions?


	Turing Machines
	Decision Problems
	Complexity

