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Section 1

Solving DP Problems quickly for Fun and Profit



How many ways are there to make change for N¢ with these coins?

1 , 5 , 10 , 25 , 50



For example, we have that 16¢ can be represented in 6 different ways:

16¢ = 10 5 1

= 5 5 5 1

= 10 1 1 1 1 1 1

= 5 5 1 1 1 1 1 1

= 5 1 · · · 1︸ ︷︷ ︸
11

= 1 · · · 1︸ ︷︷ ︸
16



@cache
def num_coin_sums(N, coins):

if N < 0: return 0
if N == 0: return 1
if len(coins) == 0: return 0
return num_coin_sums(N - coins[0], coins) +

num_coin_sums(N, tuple(coins[1:]))↪→



Consider a simpler problem - how many ways of making change with
just dimes and nickels

To compact notation, let us denote 1
4
= 1 1 1 1



Consider all possible combinations of making change with 5 and 10

5¢ : 5

10¢ : 10 , 5
2

15¢ : 10 5 , 5
3

20¢ : 10
2
, 10 5

2
, 5

4

...



WARNING: Engineering levels of rigor ahead1

Consider the following sum of all combinations of nickels and dimes:

S = 1+ 5
0
+ 5 + 10 + 5

2
+ 10 5 + 5

3
+ 10

2
+ 10 5

2
+ 5

4
+· · ·

1We will resolve this later
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S = 1
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S =
(
1 + 5 + 5

2
+ 5

3
+ · · ·

)(
1 + 10 + 10

2
+ 10

3
+ · · ·

)
=

1

1− 5
· 1

1− 10
(geometric series)

=
1

1− x5
· 1

1− x10

(
5 = x5, 10 = x10

)



Sanity Check

We can check that this power series actually works
sage: R.<x> = PowerSeriesRing(ZZ, default_prec=100)
sage: 1 / ((1-x^5) * (1-x^10))
1 + x^5 + 2*x^10 + 2*x^15 + 3*x^20 + 3*x^25 + 4*x^30 +

4*x^35 + 5*x^40 + 5*x^45 + 6*x^50 + 6*x^55 + 7*x^60
+ 7*x^65 + 8*x^70 + 8*x^75 + 9*x^80 + 9*x^85 +
10*x^90 + 10*x^95 + O(x^100)

↪→

↪→

↪→

For example, there are only 8 ways to make 70¢ with nickles and dimes
EXERCISE: Check this



By a similar kind of logic, letting Cn being the number of ways of
making change for n¢, we have a generating function:

C(z) =
∑
n≥0

Cnz
n =

1

(1− z)(1− z5)(1− z10)(1− z25)(1− z50)



With some algebraic manipulation of this generating function2, we can
get an explicit formula for its coefficients

from math import comb as C

def num_coin_sums_fast(N):
A = [1,2,4,6,9,13,18,24,31,39,45,52,57,63,67,69,69,67,63 ⌋

,57,52,45,39,31,24,18,13,9,6,4,2,1]↪→

N //= 5
q = N // 10; r = N % 10
return A[r] * C(q+4, 4) + A[r+10] * C(q+3,4) + A[r+20] *

C(q+2, 4) + A[r+30] * C(q+1, 4)↪→

2See Knuth’s Concrete Mathematics p345-6 where this example is taken for the
details of the derivation - it’s mostly (messy) algebra



Section 2

Ordinary Generating Functions



We now define things more rigorously - define a combinatorial class to
be a set of objects with a corresponding size function

In our previous example, our combinatorial class was

C =
{

50
z1

25
z2

10
z3

5
z4 1

z5
: zi ∈ Z≥0

}

and the associated size function is∥∥∥ 50
z1

25
z2

10
z3

5
z4 1

z5
∥∥∥ = 50z1 + 25z2 + 10z3 + 5z4 + z5



For any combinatorial class A, we define it’s associated ordinary
generating function to be

A(z) =
∑
a∈A

z|a| =
∑
N≥0

ANzN

With this generating function, we can get the number of objects of size
N by extracting the corresponding coefficient

AN = [zN ]A(z)



In our last example, we had C(z) = 1
(1−z)(1−z5)(1−z10)(1−z25)(1−z50)

We can use this to count the number of ways of getting 42¢ as follows:

C42 = [z42]C(z)

= [z42]
(
1 + z + z2 + z3 + z4 + 2z5 + · · ·+ 31z41 + 31z42 + · · ·

)
= 31



Exercises

We will be working over binary strings - assume the size function is just
the length of the string
Find the corresponding generating function for these combiatorial
classes

• Σ = all binary strings
• Z = the set of all strings of zeros of length at least 5
• E = the set of all binary strings whose length is even



Σ(z) =
∑
N≥0

2NzN =
∑
N≥0

(2z)N =
1

1− 2z

Z(z) =
∑
N≥5

zN =
z5

1− z

E(z) =
∑
N≥0

22Nz2N =
1

1− 4z2



Let A and B be combinatorial classes with associated generating
functions A(z) and B(z) respectively.

We can combine these combinatorial classes to get new combinatorial
classes with new generating functions



Let C = A+ B be the disjoint union of A and B. We have that the
corresponding generating function is

C(z) =
∑

c∈A+B
z|c| =

∑
a∈A

z|a| +
∑
b∈B

z|b| = A(z) +B(z)



Similarly, we have that if C = A× B be the Cartesian product of A and
B. then the corresponding generating function is

C(z) =
∑

c∈A×B
z|c| =

∑
a∈A

∑
b∈B

z|a|+|b| =

(∑
a∈A

z|a|

)(∑
b∈B

z|b|

)
= A(z)B(z)



Finally, letting ϵ be the empty combinatorial class, let
C = ϵ+A+A2 +A3 + ... ≡ SEQ(A), we have that the corresponding
generating function is C(z) = 1

1−A(z)



With these new tools, we can solve the above problems much more easily.

For example:

B = {0, 1}, B(z) = 2z =⇒ Σ = SEQ(B),Σ(z) =
1

1− 2z



Let’s deal with something more complicated: how many binary trees are
there with n internal nodes (and therefore n+ 1 leaf nodes)?
An example for n = 3:



Let T be the combinatorial class of all such trees. Note that we can
decompose any tree T as follows:



Note that we have an invertible mapping T 7→ (◦, Tl, Tr) meaning that
we can decompose and recompose tress uniquely.

Since the left and right subtrees are also in T , we can use the above to
come up with an equation defining T and get a generating function T (z):

T = ◦+ T × T =⇒ T (z) = z + T (z)2 =⇒ T (z) =
1−

√
1− 4z

2



With this generating function, we can get a general formula for the nth

coefficient Tn (Note that this is generally not possible)

(1− 4z)1/2 =
∑
k≥0

(1
2

k

)
(−4z)k

=⇒ T (z) =
1−

√
1− 4z

2
= −1

2

∑
k≥1

(1
2

k

)
(−4z)k

=⇒ Tn = −1

2

(1
2

k

)
(−4)k =

1

n

(
2n− 2

n− 1

)



These are the Catalan numbers - Richard Stanley has 207 examples of
different sequences that correspond to the Catalan numbers

https://www.cambridge.org/core/books/catalan-numbers/5441FB5B09E9C01185834D9CBB9DFAD9


We conclude from an example from number theory - let pn be the
number of partitions of n, or the number of ways of writing n as a sum
of positive integers.

For example, we have p5 = 7 as

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1



Similar to our first example, we can define a generating function
P (z) =

∑
k≥0 pkz

k

P (z) =
∑
k≥0

pkz
k

= (1 + z1 + z1+1 + · · · )(1 + z2 + z2+2 + · · · )(1 + z3 + z3+3 + · · · ) · · ·

=
∏
j≥1

1

1− xj



We end with a proof of a non-obvious fact
Let Po(n) be the number of partitions of n into odd parts. For example,
we have that Po(7) = 5 as

7 = 7

= 5 + 1 + 1

= 3 + 3 + 1

= 3 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1 + 1



Next, let Pd(n) be the number of partitions of n into distinct parts. For
example, we have that Pd(7) = 5 as

7 = 7

= 6 + 1

= 5 + 2

= 4 + 3

= 4 + 2 + 1



This equality is not a coincidence - we will show that Po(n) = Pd(n) for
any n.
Let

Po(z) =
∑
k≥0

Po(k)z
k , Pd(z) =

∑
k≥0

Pd(k)z
k

be the corresponding generating functions.



The Proof
We have:

Pd(z) = (1 + z)(1 + z2)(1 + z3)(1 + z4)(1 + z5) · · ·

=
1− z2

1− z
· 1− z4

1− z2
· 1− z6

1− z3
· 1− z8

1− z4
· 1− z10

1− z5
· · ·

=
1

(1− z)(1− z3)(1− z5) · · ·
= (1 + z1 + z1+1 + z1+1+1 + · · · )(1 + z3 + z3+3 + z3+3+3 + · · · )

(1 + z5 + z5+5 + z5+5+5 + · · · ) · · ·
= Po(z)

Since these two sequences have the same generating function, their
coefficients must be the same - ending the proof.



Further Resources

• generatingfunctionology by Herbert Wilf - good overall resource on
generating functions

• Analytic Combinatorics by Sedgewick and Flajolet - longer resource
on generating functions that details the symbolic method (detailed
in the presentation) and how to deal with generating functions
using complex analysis to get asymptotic information

• Concrete Mathematics by Graham, Knuth and Patashnik - the
Bible on any mathematics you may need for computer science; has
a chapter on generating functions that was referenced

https://www2.math.upenn.edu/~wilf/gfologyLinked2.pdf
http://algo.inria.fr/flajolet/Publications/book.pdf
https://www.csie.ntu.edu.tw/~r97002/temp/Concrete%20Mathematics%202e.pdf


A generating function is a clothesline on which we hang up a sequence of numbers

for display.

— HERBERT WILF (1990)
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