Week 11
Generating Functions

Husnain



Section 1

Solving DP Problems quickly for Fun and Profit



How many ways are there to make change for N¢ with these coins?
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For example, we have that 16¢ can be represented in 6 different ways:
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@cache
def num_coin_sums(N, coins):
if N < 0: return O
if N == 0: return 1
if len(coins) == 0: return O
return num_coin_sums(N - coins[0], coins) +
< num_coin_sums (N, tuple(coins[1:]))



Consider a simpler problem - how many ways of making change with
just dimes and nickels

To compact notation, let us denote @4 = @ @ @ @



Consider all possible combinations of making change with @ and

5C : @
10¢ : (10),(5)
15¢ - @@3
20¢ : 2,@2,@4



WARNING: Engineering levels of rigor ahead!

Consider the following sum of all combinations of nickels and dimes:

S = 1+@0+@++@2+ @+@3+2+ & +E) +-

1'We will resolve this later
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S = (1+@+@2+@3+-~) <1++2+3+~-->

1 1
: (geometric series)
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Sanity Check

We can check that this power series actually works

sage: R.<x> = PowerSeriesRing(ZZ, default_prec=100)
sage: 1 / ((1-x75) * (1-x~10))

1 + x75 + 2xx~10 + 2*x~15 + 3*x~20 + 3*x~25 + 4*x~30 +
— 4%x735 + 5*x740 + 5%x745 + 6%x750 + 6%x755 + 7*x"60
— + 7*¥x765 + 8%x770 + 8*x~75 + 9%x~80 + 9*x~85 +

— 10*x790 + 10*x~95 + 0(x~100)

For example, there are only 8 ways to make 70¢ with nickles and dimes
EXERCISE: Check this



By a similar kind of logic, letting C), being the number of ways of
making change for n¢, we have a generating function:

1

Cle) = 2 On" = (T = )1 =21 = 25)(1 = )

n>0



With some algebraic manipulation of this generating function?, we can
get an explicit formula for its coefficients

from math import comb as C

def num_coin_sums_fast(N):
A = [1,2,4,6,9,13,18,24,31,39,45,52,57,63,67,69,69,67,63J
-~ ,57,52,45,39,31,24,18,13,9,6,4,2,1]
N //=5
q=N//10; r =N % 10
return A[r] * C(q+4, 4) + A[r+10] * C(q+3,4) + A[r+20] *
< C(g+2, 4) + A[r+30] * C(g+1, 4)

2See Knuth’s Concrete Mathematics p345-6 where this example is taken for the
details of the derivation - it’s mostly (messy) algebra



Section 2

Ordinary Generating Functions



We now define things more rigorously - define a combinatorial class to
be a set of objects with a corresponding size function

In our previous example, our combinatorial class was

c_ {21@2223@z4®25 Lz € Zzo}

and the associated size function is

’ ‘ Zl @Z2 23 @Z4 ®Z5

= 502z1 + 2529 + 1023 + 524 + 25



For any combinatorial class A, we define it’s associated ordinary
generating function to be

Az) = Z 2ol = Z AnzN

acA N>0

With this generating function, we can get the number of objects of size
N by extracting the corresponding coefficient

Ay = [2V]A(2)



In our last example, we had C(z) = (1_Z)(1_Z5)(1_Z}0)(1_z25)(1_Z50)
We can use this to count the number of ways of getting 42¢ as follows:

Caz = [z7]C(2)
=) (L+z+ 22+ 28+ 24 425+ + 312 + 31212 4
=31



Exercises

We will be working over binary strings - assume the size function is just
the length of the string

Find the corresponding generating function for these combiatorial
classes

® > = all binary strings
e Z = the set of all strings of zeros of length at least 5

e £ = the set of all binary strings whose length is even






Let A and B be combinatorial classes with associated generating
functions A(z) and B(z) respectively.

We can combine these combinatorial classes to get new combinatorial
classes with new generating functions



Let C = A+ B be the disjoint union of A and B. We have that the

corresponding generating function is

C(z) = Z zlel = Z ol 4 Z 2P = A(2) + B(2)

ceEA+B acA beB



Similarly, we have that if C = A x B be the Cartesian product of A and
B. then the corresponding generating function is

Clz)= Y A= "% "zl = (Z z“') (Z z|b|> = A(2)B(z)

ceEAXB acA beB acA beB
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Finally, letting € be the empty combinatorial class, let
C=e+ A+ A%+ A% + ... = SEQ(A), we have that the corresponding
generating function is C(z) = ﬁ%@



With these new tools, we can solve the above problems much more easily.

For example:

B={0,1},B(z) = 2: = T =SEQ(B),X(z) = 1—5



Let’s deal with something more complicated: how many binary trees are
there with n internal nodes (and therefore n + 1 leaf nodes)?
An example for n = 3:

QERTTR,
2



Let T be the combinatorial class of all such trees. Note that we can
decompose any tree T as follows:




Note that we have an invertible mapping 7" +— (o, T}, 7,) meaning that
we can decompose and recompose tress uniquely.

Since the left and right subtrees are also in T, we can use the above to
come up with an equation defining 7" and get a generating function 7'(z):

1—-+v1-42

T=0+TxT = T(2)=2+T(2)? = T(2) = 5



With this generating function, we can get a general formula for the nt"
coefficient 7T, (Note that this is generally not possible)

(1—42)2=>" (i) (—dz)

— 1) =T <k) (—42)"

R (R



These are the Catalan numbers - Richard Stanley has 207 examples of
different sequences that correspond to the Catalan numbers


https://www.cambridge.org/core/books/catalan-numbers/5441FB5B09E9C01185834D9CBB9DFAD9

We conclude from an example from number theory - let p,, be the
number of partitions of n, or the number of ways of writing n as a sum
of positive integers.

For example, we have p; = 7 as

5=25
=441
=3+2
=3+1+1
=2+2+1
=2+1+1+1
=1+1+1+1+1



Similar to our first example, we can define a generating function
P(z) = Y0 o2

:(1—{—21—|—Zl+1+"')(1—|—22+Z2+2+"')(1+Z3+23+3—|—"')"'




We end with a proof of a non-obvious fact
Let P,(n) be the number of partitions of n into odd parts. For example,
we have that P,(7) =5 as

T=17
=5+1+1
=3+3+1
=3+1+1+1+1
=1+1+1+1+1+1+1



Next, let Py(n) be the number of partitions of n into distinct parts. For
example, we have that P;(7) =5 as

T=7
=6+1
=5+2
=4+3
=4+2+1



This equality is not a coincidence - we will show that P,(n) = Py(n) for
any n.
Let
Po(z) = Po(k)z" , Puy(z) = Pa(k)z"
k>0 k>0

be the corresponding generating functions.



The Proof
We have:

Pyz)= (1+2) 1420+ 20+ 21 +25)---

1—22 1—2% 1—-25 1-28 1210

1—2z 1-—22 1—23 1—24 1-2
1

== =)

_ (1+21+Zl+1+Zl+1+1+---)(1+Z3+Z3+3+Z3+3+3+~--

(1—|—Z5+Z5+5+25+5+5+---)-'-
= Py(2)

Since these two sequences have the same generating function, their
coeflicients must be the same - ending the proof.



Further Resources

® generatingfunctionology by Herbert Wilf - good overall resource on
generating functions

e Analytic Combinatorics by Sedgewick and Flajolet - longer resource
on generating functions that details the symbolic method (detailed
in the presentation) and how to deal with generating functions
using complex analysis to get asymptotic information

e (Concrete Mathematics by Graham, Knuth and Patashnik - the
Bible on any mathematics you may need for computer science; has
a chapter on generating functions that was referenced


https://www2.math.upenn.edu/~wilf/gfologyLinked2.pdf
http://algo.inria.fr/flajolet/Publications/book.pdf
https://www.csie.ntu.edu.tw/~r97002/temp/Concrete%20Mathematics%202e.pdf

A generating function is a clothesline on which we hang up a sequence of numbers
for display.

— HERBERT WILF (1990)
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