# Week 11 <br> Generating Functions 

Husnain

## Section 1

Solving DP Problems quickly for Fun and Profit

How many ways are there to make change for $N \dot{c}$ with these coins?
(1), (5), 10, (25, 50

For example, we have that 16¢ can be represented in 6 different ways:

$$
\begin{aligned}
16 \grave{c} & =10(5)(1) \\
& =5(5)(1) \\
& =10(1)(1)(1)(1)(1) \\
& =(5) \underbrace{1}_{11} \cdots(1) \\
& =\underbrace{1}_{16} \cdots(1)
\end{aligned}
$$

```
@cache
def num_coin_sums(N, coins):
    if N < O: return 0
    if N == 0: return 1
    if len(coins) == 0: return 0
    return num_coin_sums(N - coins[0], coins) +
    @um_coin_sums(N, tuple(coins[1:]))
```

Consider a simpler problem - how many ways of making change with just dimes and nickels

To compact notation, let us denote (1) ${ }^{4}=$ (1) (1) (1)

Consider all possible combinations of making change with (5) and 10

$$
\begin{aligned}
& 5 \dot{c}: 5 \\
& 10 \dot{c}:\left(10,(5)^{2}\right. \\
& 15 \dot{c}:(10),(5)^{3} \\
& 20 \dot{c}:(10)^{2}, 105^{2},(5)^{4}
\end{aligned}
$$

## WARNING: Engineering levels of rigor ahead ${ }^{1}$

Consider the following sum of all combinations of nickels and dimes:

$$
S=1+(5)^{0}+(5)+10+(5)^{2}+10\left(5+(5)^{3}+10\right)^{2}+10(5)^{2}+(5)^{4}+\cdots
$$

[^0]\[

$$
\begin{aligned}
& S=1+(5)+(5)^{2}+(5)^{3}+(5)^{4}+(5)^{5}+\cdots \\
& +10+10\left(5+10(5)^{2}+10(5)^{3}+10(5)^{4}+10(5)^{5}+\cdots\right. \\
& +(10)^{2}+(10)^{2}(5+10)^{2}(5)^{2}+(10)^{2}(5)^{3}+(10)^{2}(5)^{4}+(5)^{2}+\cdots \\
& +(10)^{3}+(10)^{3}\left(5+(10)^{3}(5)^{2}+(10)^{3}(5)^{3}+10\right)^{3}(5)^{4}+(5)^{5}+\cdots \\
& \left.+(10)^{4}+(10)^{4}(5+10)^{4}(5)^{2}+(10)^{4}(5)^{3}+10\right)^{4}(5)^{4}(5)^{5} \cdots
\end{aligned}
$$
\]

$$
\begin{aligned}
S & =1\left(1+5+(5)^{2}+(5)^{3}+(5)^{4}+(5)^{5}+\cdots\right) \\
& \left.+10\left(1+5+(5)^{2}+(5)^{3}+5\right)^{4}+(5)^{5}+\cdots\right) \\
& +10)^{2}\left(1+5+(5)^{2}+\left(5^{3}+(5)^{4}+(5)^{5}+\cdots\right) \cdots\right. \\
& \left.+10)^{3}\left(1+5+(5)^{2}+(5)^{3}+5\right)^{4}+(5)^{5}+\cdots\right) \cdots \\
& \left.+10)^{4}\left(1+5+(5)^{2}+(5)^{3}+5\right)^{4}+(5)^{5}+\cdots\right) \cdots
\end{aligned}
$$

$$
\begin{array}{rlrl}
S & \left.\left.\left.=(1+5)+5)^{2}+5\right)^{3}+\cdots\right)(1+(10)+10)^{2}+0^{3}+\cdots\right) \\
& =\frac{1}{1-5} \cdot \frac{1}{1-(10} & \quad(\text { geometric series }) \\
& =\frac{1}{1-x^{5}} \cdot \frac{1}{1-x^{10}} & \left.(5)=x^{5}, 10=x^{10}\right)
\end{array}
$$

## Sanity Check

We can check that this power series actually works

$$
\begin{aligned}
& \text { sage: R.<x> }=\text { PowerSeriesRing(ZZ, default_prec=100) } \\
& \text { sage: } 1 /\left(\left(1-x^{\wedge}\right) *\left(1-x^{\wedge} 10\right)\right) \\
& 1+x^{\wedge} 5+2 * x^{\wedge} 10+2 * x^{\wedge} 15+3 * x^{\wedge} 20+3 * x^{\wedge} 25+4 * x^{\wedge} 30+ \\
& \rightarrow 4 * x^{\wedge} 35+5 * x^{\wedge} 40+5 * x^{\wedge} 45+6 * x^{\wedge} 50+6 * x^{\wedge} 55+7 * x^{\wedge} 60 \\
& \rightarrow+7 * x^{\wedge} 65+8 * x^{\wedge} 70+8 * x^{\wedge} 75+9 * x^{\wedge} 80+9 * x^{\wedge} 85+ \\
& \rightarrow 10 * x^{\wedge} 90+10 * x^{\wedge} 95+0\left(x^{\wedge} 100\right)
\end{aligned}
$$

For example, there are only 8 ways to make $70 \dot{c}$ with nickles and dimes EXERCISE: Check this

By a similar kind of logic, letting $C_{n}$ being the number of ways of making change for $n \dot{\psi}$, we have a generating function:

$$
C(z)=\sum_{n \geq 0} C_{n} z^{n}=\frac{1}{(1-z)\left(1-z^{5}\right)\left(1-z^{10}\right)\left(1-z^{25}\right)\left(1-z^{50}\right)}
$$

With some algebraic manipulation of this generating function ${ }^{2}$, we can get an explicit formula for its coefficients

```
from math import comb as C
def num_coin_sums_fast(N):
    A = [1,2,4,6,9,13,18,24,31,39,45,52,57,63,67,69,69,67,63।
    \hookrightarrow , 57,52, 45, 39, 31, 24,18, 13,9,6,4, 2, 1]
    N //= 5
    q = N // 10; r = N % 10
    return A[r] * C(q+4,4) + A[r+10]*C(q+3,4) + A[r+20]*
    C(q+2,4)+A[r+30]*C(q+1,4)
```

[^1]Section 2
Ordinary Generating Functions

We now define things more rigorously - define a combinatorial class to be a set of objects with a corresponding size function

In our previous example, our combinatorial class was

$$
\mathcal{C}=\left\{(50)^{z_{1}}(25)^{z_{2}}(10)^{z_{3}}(1)^{z_{4}}: z_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

and the associated size function is

$$
\left\|(50)^{z_{1}}(25)^{z_{2}}(10)^{z_{3}}(1)^{z_{4}}\right\|=50 z_{1}+25 z_{2}+10 z_{3}+5 z_{4}+z_{5}
$$

For any combinatorial class $A$, we define it's associated ordinary generating function to be

$$
A(z)=\sum_{a \in A} z^{|a|}=\sum_{N \geq 0} A_{N} z^{N}
$$

With this generating function, we can get the number of objects of size $N$ by extracting the corresponding coefficient

$$
A_{N}=\left[z^{N}\right] A(z)
$$

In our last example, we had $C(z)=\frac{1}{(1-z)\left(1-z^{5}\right)\left(1-z^{10}\right)\left(1-z^{25}\right)\left(1-z^{50}\right)}$ We can use this to count the number of ways of getting 42 C as follows:

$$
\begin{aligned}
C_{42} & =\left[z^{42}\right] C(z) \\
& =\left[z^{42}\right]\left(1+z+z^{2}+z^{3}+z^{4}+2 z^{5}+\cdots+31 z^{41}+\underline{31 z^{42}}+\cdots\right) \\
& =31
\end{aligned}
$$

## Exercises

We will be working over binary strings - assume the size function is just the length of the string
Find the corresponding generating function for these combiatorial classes

- $\Sigma=$ all binary strings
- $\mathcal{Z}=$ the set of all strings of zeros of length at least 5
- $\mathcal{E}=$ the set of all binary strings whose length is even

$$
\begin{gathered}
\Sigma(z)=\sum_{N \geq 0} 2^{N} z^{N}=\sum_{N \geq 0}(2 z)^{N}=\frac{1}{1-2 z} \\
\mathcal{Z}(z)=\sum_{N \geq 5} z^{N}=\frac{z^{5}}{1-z} \\
\mathcal{E}(z)=\sum_{N \geq 0} 2^{2 N} z^{2 N}=\frac{1}{1-4 z^{2}}
\end{gathered}
$$

Let $\mathcal{A}$ and $\mathcal{B}$ be combinatorial classes with associated generating functions $A(z)$ and $B(z)$ respectively.

We can combine these combinatorial classes to get new combinatorial classes with new generating functions

Let $\mathcal{C}=\mathcal{A}+\mathcal{B}$ be the disjoint union of $\mathcal{A}$ and $\mathcal{B}$. We have that the corresponding generating function is

$$
C(z)=\sum_{c \in \mathcal{A}+\mathcal{B}} z^{|c|}=\sum_{a \in \mathcal{A}} z^{|a|}+\sum_{b \in \mathcal{B}} z^{|b|}=A(z)+B(z)
$$

Similarly, we have that if $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ be the Cartesian product of $\mathcal{A}$ and $\mathcal{B}$. then the corresponding generating function is

$$
C(z)=\sum_{c \in \mathcal{A} \times \mathcal{B}} z^{|c|}=\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} z^{|a|+|b|}=\left(\sum_{a \in \mathcal{A}} z^{|a|}\right)\left(\sum_{b \in \mathcal{B}} z^{|b|}\right)=A(z) B(z)
$$

Finally, letting $\epsilon$ be the empty combinatorial class, let $\mathcal{C}=\epsilon+A+A^{2}+A^{3}+\ldots \equiv \operatorname{SEQ}(A)$, we have that the corresponding generating function is $C(z)=\frac{1}{1-A(z)}$

With these new tools, we can solve the above problems much more easily.

For example:

$$
B=\{0,1\}, B(z)=2 z \Longrightarrow \Sigma=\operatorname{SEQ}(B), \Sigma(z)=\frac{1}{1-2 z}
$$

Let's deal with something more complicated: how many binary trees are there with $n$ internal nodes (and therefore $n+1$ leaf nodes)? An example for $n=3$ :


Let $\mathcal{T}$ be the combinatorial class of all such trees. Note that we can decompose any tree $T$ as follows:

$\Sigma$

Note that we have an invertible mapping $T \mapsto\left(\circ, T_{l}, T_{r}\right)$ meaning that we can decompose and recompose tress uniquely.

Since the left and right subtrees are also in $\mathcal{T}$, we can use the above to come up with an equation defining $\mathcal{T}$ and get a generating function $T(z)$ :

$$
\mathcal{T}=\circ+\mathcal{T} \times \mathcal{T} \Longrightarrow T(z)=z+T(z)^{2} \Longrightarrow T(z)=\frac{1-\sqrt{1-4 z}}{2}
$$

With this generating function, we can get a general formula for the $n^{t h}$ coefficient $T_{n}$ (Note that this is generally not possible)

$$
\begin{aligned}
(1-4 z)^{1 / 2} & =\sum_{k \geq 0}\binom{\frac{1}{2}}{k}(-4 z)^{k} \\
\Longrightarrow T(z) & =\frac{1-\sqrt{1-4 z}}{2}=-\frac{1}{2} \sum_{k \geq 1}\binom{\frac{1}{2}}{k}(-4 z)^{k} \\
\Longrightarrow T_{n} & =-\frac{1}{2}\binom{\frac{1}{2}}{k}(-4)^{k}=\frac{1}{n}\binom{2 n-2}{n-1}
\end{aligned}
$$

These are the Catalan numbers - Richard Stanley has 207 examples of different sequences that correspond to the Catalan numbers

We conclude from an example from number theory - let $p_{n}$ be the number of partitions of $n$, or the number of ways of writing $n$ as a sum of positive integers.

For example, we have $p_{5}=7$ as

$$
\begin{aligned}
5 & =5 \\
& =4+1 \\
& =3+2 \\
& =3+1+1 \\
& =2+2+1 \\
& =2+1+1+1 \\
& =1+1+1+1+1
\end{aligned}
$$

Similar to our first example, we can define a generating function $P(z)=\sum_{k \geq 0} p_{k} z^{k}$

$$
\begin{aligned}
P(z) & =\sum_{k \geq 0} p_{k} z^{k} \\
& =\left(1+z^{1}+z^{1+1}+\cdots\right)\left(1+z^{2}+z^{2+2}+\cdots\right)\left(1+z^{3}+z^{3+3}+\cdots\right) \cdots \\
& =\prod_{j \geq 1} \frac{1}{1-x^{j}}
\end{aligned}
$$

We end with a proof of a non-obvious fact
Let $P_{o}(n)$ be the number of partitions of $n$ into odd parts. For example, we have that $P_{o}(7)=5$ as

$$
\begin{aligned}
7 & =7 \\
& =5+1+1 \\
& =3+3+1 \\
& =3+1+1+1+1 \\
& =1+1+1+1+1+1+1
\end{aligned}
$$

Next, let $P_{d}(n)$ be the number of partitions of $n$ into distinct parts. For example, we have that $P_{d}(7)=5$ as

$$
\begin{aligned}
7 & =7 \\
& =6+1 \\
& =5+2 \\
& =4+3 \\
& =4+2+1
\end{aligned}
$$

This equality is not a coincidence - we will show that $P_{o}(n)=P_{d}(n)$ for any $n$.
Let

$$
P_{o}(z)=\sum_{k \geq 0} P_{o}(k) z^{k} \quad, \quad P_{d}(z)=\sum_{k \geq 0} P_{d}(k) z^{k}
$$

be the corresponding generating functions.

## The Proof

We have:

$$
\begin{aligned}
P_{d}(z)= & (1+z)\left(1+z^{2}\right)\left(1+z^{3}\right)\left(1+z^{4}\right)\left(1+z^{5}\right) \cdots \\
= & \frac{1-z^{2}}{1-z} \cdot \frac{1-z^{4}}{1-z^{2}} \cdot \frac{1-z^{6}}{1-z^{3}} \cdot \frac{1-z^{8}}{1-z^{4}} \cdot \frac{1-z^{10}}{1-z^{5}} \cdots \\
= & \frac{1}{(1-z)\left(1-z^{3}\right)\left(1-z^{5}\right) \cdots} \\
= & \left(1+z^{1}+z^{1+1}+z^{1+1+1}+\cdots\right)\left(1+z^{3}+z^{3+3}+z^{3+3+3}+\cdots\right) \\
& \left(1+z^{5}+z^{5+5}+z^{5+5+5}+\cdots\right) \cdots \\
= & P_{o}(z)
\end{aligned}
$$

Since these two sequences have the same generating function, their coefficients must be the same - ending the proof.

## Further Resources

- generatingfunctionology by Herbert Wilf - good overall resource on generating functions
- Analytic Combinatorics by Sedgewick and Flajolet - longer resource on generating functions that details the symbolic method (detailed in the presentation) and how to deal with generating functions using complex analysis to get asymptotic information
- Concrete Mathematics by Graham, Knuth and Patashnik - the Bible on any mathematics you may need for computer science; has a chapter on generating functions that was referenced

A generating function is a clothesline on which we hang up a sequence of numbers for display.

- HERBERT WILF (1990)


[^0]:    ${ }^{1}$ We will resolve this later

[^1]:    ${ }^{2}$ See Knuth's Concrete Mathematics p345-6 where this example is taken for the details of the derivation - it's mostly (messy) algebra

