
Week 0

Welcome To SIGma

SIGma

Outline of a Short Meeting

Officers in No Particular Order

Computing Fibonacci

Open Forum

Anakin (@Spamakin)

• Math Major
• SIGPwny Crypto1 Gang + Admin team
• CA for CS 173 + 374
• Research with Sam
• Intern at CME Group over the summer

1Not that one, the other one

Sam (@Surg)

• Summer Amazon Intern
• CS Major
• Doing CS374 Course Dev
• Doing Theory Research with Sariel Har-Peled
• Research with Anakin

Husnain

• Math Major
• SIGPwny Crypto Gang + Helper
• Project Euler Enthusiast

Aditya (@nebu)

• ECE/Math double degree.
• Worked on fast Ethernet error correction hardware over the

summer.
• Other interests: FP, PL, Crypto.

Hassam

• Intern at Amazon over the summer
• CS/Math Dual Major
• SIGPwny Crypto Gang + Admin team
• CA for CS 233
• Compiler research

Phil (@fizzle)

• CS/Ling Major
• CA for CS 233
• SIGecom - game theory, economics, and computation

Section 2

Computing Fibonacci

Recursive

Fn+1 = Fn + Fn−1 (n ≥ 1;F0 = 0;F1 = 1)

Figure: From Algorithms by Jeff Erickson

Iterative

fibonacci(n):
prev, curr ← 1, 0
for i← 1 . . . n

next← curr + prev
prev ← curr
curr ← next

return curr

Aside: Square-and-Multiply

Before we get to the even faster way to compute Fn, we first look how to
compute powers of a number quickly.
Say we want to compute x8. We can use 7 multiplications as follows:

x→ x2 → x3 → x4 → x5 → x6 → x7 → x8

But we can use just 3:

x→ x2 → x4 → x8

.

We can use 12 multiplications to compute x13 as follows:

x→ x2 → x3 → x4 → x5 → x6 → x7 → x8 → x9 → x10 → x11 → x12 → x13

But if we first compute powers as such

x2 ← x · x
x4 ← x2 · x2

x8 ← x4 · x4

And then using these we get x8 · x4 · x = x13 in just 6 total
multiplications.
We can generalize this using binary

1 1 0 1

power(x, n):
curr ← 1
for i← 1 . . . n :

curr ← curr ∗ x
return curr

squareMultPower(x, n):
res, power ← 1, x
for bit in binary(n):

if bit = 1:
res← res ∗ power

power ← power ∗ power
return res

Matrices

We have the following two linear equations

Fn = Fn−1 + Fn−2

Fn−1 = Fn−1

We can represent this as follows using matrices[
Fn−1

Fn

]
=

[
0 1
1 1

] [
Fn−2

Fn−1

]
=

[
0 1
1 1

]2 [
Fn−3

Fn−2

]
= . . . =

[
0 1
1 1

]n [
0
1

]

Generating Functions

“A generating function is a clothesline on which we hang up a
sequence of numbers for display”

— Herbert Wilf, Generatingfunctionology

Generating Functions

Explicitly, our recurrence is

Fn+1 = Fn + Fn−1 (n ≥ 1;F0 = 0;F1 = 1)

Define a “generating function”: a function whose coefficients are the
Fibonacci numbers

F (x) =
∑
n≥0

Fnx
n = F0 + F1x+ F2x

2 + · · ·

Let’s find this function!

Generating Functions: The LHS

Given,

F (x) =
∑
n≥0

Fnx
n Fn+1 = Fn + Fn−1 (n ≥ 1)

Multiply LHS of recurrence by xn, and take the sum for n ≥ 1.

F2x+ F3x
2 + F4x

3 + · · · = F (x)− x

x
(1)

Generating Functions: The RHS

Given,

F (x) =
∑
n≥0

Fnx
n Fn+1 = Fn + Fn−1 (n ≥ 1)

Multiply RHS of recurrence by xn, and take the sum for n ≥ 1.(
F1x+ F2x

2 + F3x
3 + · · ·

)
+
(
F0x+ F1x

2 + F2x
3 + · · ·

)
= F (x) + xF (x) (2)

Generating Functions: Equate LHS and RHS

F (x)− x

x
= F (x) + x · F (x)

=⇒ F (x) =
x

1− x− x2

That’s our generating function!

Generating Functions: Some Further Analysis

Remember partial fraction decomposition?

F (x) =
x

1− x− x2

F (x) =
x

(1− xr+)(1− xr−)
=

1

r+ − r−

(
1

1− xr+
− 1

1− xr−

)
where

r± =
1±
√
5

2

Generating Functions: Geometric Series

For a geometric series,
∞∑
n=0

arn =
a

1− r

Using the geometric series sum formula,

F (x) =
1√
5

(
1

1− xr+
− 1

1− xr−

)

=⇒ F (x) =
1√
5

(∞∑
i=0

ri+x
i −

∞∑
i=0

ri−x
i

)

Generating Functions: Almost There

Writing this out to make it a bit more obvious,

F (x) =
1√
5

(∞∑
i=0

(ri+ − ri−)x
i

)

Doesn’t this look a lot like a polynomial? The coefficients are the
Fibonacci numbers we are after!

Generating Functions: Closed Form

Picking off coefficients from the geometric series, we see that

Fn =
1√
5

(
rn+ − rn−

)
Since |r−/

√
5| < 0.5 for all n ≥ 0, we can actually neglect it altogether

to get a simpler closed form:

Fn =

⌊
1√
5

(
1 +
√
5

2

)n⌉

Summary

Algorithm Time Complexity

Naive recursive O (2n)
Iterative O(n)
Matrix O(log n)
Generating functions O(1)

Section 3

Open Forum

Time?

Book?

Research?

So long, and thanks for all the fish!

	Officers in No Particular Order
	Computing Fibonacci
	Open Forum

