Week 0
Welcome To SIGma
SIGma

Outline of a Short Meeting

Officers in No Particular Order

Computing Fibonacci

Open Forum

Anakin (@Spamakin)

- Math Major
- SIGPwny Crypto ${ }^{1}$ Gang + Admin team
- CA for CS $173+374$
- Research with Sam
- Intern at CME Group over the summer

[^0]
Sam (@Surg)

- Summer Amazon Intern
- CS Major
- Doing CS374 Course Dev
- Doing Theory Research with Sariel Har-Peled
- Research with Anakin

Husnain

- Math Major
- SIGPwny Crypto Gang + Helper
- Project Euler Enthusiast

Aditya (@nebu)

- ECE/Math double degree.
- Worked on fast Ethernet error correction hardware over the summer.
- Other interests: FP, PL, Crypto.

Hassam

- Intern at Amazon over the summer
- CS/Math Dual Major
- SIGPwny Crypto Gang + Admin team
- CA for CS 233
- Compiler research

Phil (@fizzle)

- CS/Ling Major
- CA for CS 233
- SIGecom - game theory, economics, and computation

Section 2

Computing Fibonacci

Recursive

$$
F_{n+1}=F_{n}+F_{n-1} \quad\left(n \geq 1 ; F_{0}=0 ; F_{1}=1\right)
$$

Figure: From Algorithms by Jeff Erickson

Iterative

$\frac{\text { FIBONACCI }(\mathrm{n}):}{\text { prev }, \text { curr } \leftarrow 1,0}$
for $i \leftarrow 1 \ldots n$
next \leftarrow curr + prev
prev \leftarrow curr
curr \leftarrow next
return curr

Aside: Square-and-Multiply

Before we get to the even faster way to compute F_{n}, we first look how to compute powers of a number quickly.
Say we want to compute x^{8}. We can use 7 multiplications as follows:

$$
x \rightarrow x^{2} \rightarrow x^{3} \rightarrow x^{4} \rightarrow x^{5} \rightarrow x^{6} \rightarrow x^{7} \rightarrow x^{8}
$$

But we can use just 3:

$$
x \rightarrow x^{2} \rightarrow x^{4} \rightarrow x^{8}
$$

We can use 12 multiplications to compute x^{13} as follows:
$x \rightarrow x^{2} \rightarrow x^{3} \rightarrow x^{4} \rightarrow x^{5} \rightarrow x^{6} \rightarrow x^{7} \rightarrow x^{8} \rightarrow x^{9} \rightarrow x^{10} \rightarrow x^{11} \rightarrow x^{12} \rightarrow x^{13}$
But if we first compute powers as such

$$
\begin{aligned}
& x^{2} \leftarrow x \cdot x \\
& x^{4} \leftarrow x^{2} \cdot x^{2} \\
& x^{8} \leftarrow x^{4} \cdot x^{4}
\end{aligned}
$$

And then using these we get $x^{8} \cdot x^{4} \cdot x=x^{13}$ in just 6 total multiplications.
We can generalize this using binary

$\mathbf{1}$	$\mathbf{1}$	0	1

```
POWER \((x, n)\) :
    \(\operatorname{curr} \leftarrow 1\)
    for \(i \leftarrow 1 \ldots n:\)
        curr \(\leftarrow \operatorname{curr} * x\)
    return curr
```

SQUAREMULTPOWER(x, n):
res, power $\leftarrow 1, x$
for bit in $\operatorname{BINARY}(\mathrm{n})$:
if bit $=1$:
res \leftarrow res $*$ power
power \leftarrow power $*$ power
return res

Matrices

We have the following two linear equations

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
F_{n-1} & =F_{n-1}
\end{aligned}
$$

We can represent this as follows using matrices

$$
\left[\begin{array}{c}
F_{n-1} \\
F_{n}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
F_{n-2} \\
F_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{2}\left[\begin{array}{l}
F_{n-3} \\
F_{n-2}
\end{array}\right]=\ldots=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Generating Functions

"A generating function is a clothesline on which we hang up a sequence of numbers for display"

- Herbert Wilf, Generatingfunctionology

Generating Functions

Explicitly, our recurrence is

$$
F_{n+1}=F_{n}+F_{n-1} \quad\left(n \geq 1 ; F_{0}=0 ; F_{1}=1\right)
$$

Define a "generating function": a function whose coefficients are the Fibonacci numbers

$$
F(x)=\sum_{n \geq 0} F_{n} x^{n}=F_{0}+F_{1} x+F_{2} x^{2}+\cdots
$$

Let's find this function!

Generating Functions: The LHS

Given,

$$
F(x)=\sum_{n \geq 0} F_{n} x^{n} \quad F_{n+1}=F_{n}+F_{n-1} \quad(n \geq 1)
$$

Multiply LHS of recurrence by x^{n}, and take the sum for $n \geq 1$.

$$
\begin{equation*}
F_{2} x+F_{3} x^{2}+F_{4} x^{3}+\cdots=\frac{F(x)-x}{x} \tag{1}
\end{equation*}
$$

Generating Functions: The RHS

Given,

$$
F(x)=\sum_{n \geq 0} F_{n} x^{n} \quad F_{n+1}=F_{n}+F_{n-1} \quad(n \geq 1)
$$

Multiply RHS of recurrence by x^{n}, and take the sum for $n \geq 1$.

$$
\begin{align*}
& \left(F_{1} x+F_{2} x^{2}+F_{3} x^{3}+\cdots\right)+\left(F_{0} x+F_{1} x^{2}+F_{2} x^{3}+\cdots\right) \\
& =F(x)+x F(x) \tag{2}
\end{align*}
$$

Generating Functions: Equate LHS and RHS

$$
\begin{aligned}
& \frac{F(x)-x}{x}=F(x)+x \cdot F(x) \\
\Longrightarrow & F(x)=\frac{x}{1-x-x^{2}}
\end{aligned}
$$

That's our generating function!

Generating Functions: Some Further Analysis

Remember partial fraction decomposition?

$$
\begin{gathered}
F(x)=\frac{x}{1-x-x^{2}} \\
F(x)=\frac{x}{\left(1-x r_{+}\right)\left(1-x r_{-}\right)}=\frac{1}{r_{+}-r_{-}}\left(\frac{1}{1-x r_{+}}-\frac{1}{1-x r_{-}}\right)
\end{gathered}
$$

where

$$
r_{ \pm}=\frac{1 \pm \sqrt{5}}{2}
$$

Generating Functions: Geometric Series

For a geometric series,

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

Using the geometric series sum formula,

$$
\begin{aligned}
& F(x)=\frac{1}{\sqrt{5}}\left(\frac{1}{1-x r_{+}}-\frac{1}{1-x r_{-}}\right) \\
& \Longrightarrow F(x)=\frac{1}{\sqrt{5}}\left(\sum_{i=0}^{\infty} r_{+}^{i} x^{i}-\sum_{i=0}^{\infty} r_{-}^{i} x^{i}\right)
\end{aligned}
$$

Generating Functions: Almost There

Writing this out to make it a bit more obvious,

$$
F(x)=\frac{1}{\sqrt{5}}\left(\sum_{i=0}^{\infty}\left(r_{+}^{i}-r_{-}^{i}\right) x^{i}\right)
$$

Doesn't this look a lot like a polynomial? The coefficients are the Fibonacci numbers we are after!

Generating Functions: Closed Form

Picking off coefficients from the geometric series, we see that

$$
F_{n}=\frac{1}{\sqrt{5}}\left(r_{+}^{n}-r_{-}^{n}\right)
$$

Since $\left|r_{-} / \sqrt{5}\right|<0.5$ for all $n \geq 0$, we can actually neglect it altogether to get a simpler closed form:

$$
F_{n}=\left\lfloor\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right\rceil
$$

Summary

Algorithm	Time Complexity
Naive recursive	$O\left(2^{n}\right)$
Iterative	$O(n)$
Matrix	$O(\log n)$
Generating functions	$O(1)$

Section 3

Open Forum

Time?

Book?

Research?

So long, and thanks for all the fish!

[^0]: ${ }^{1}$ Not that one, the other one

