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Section 1

Definitions



Models of Computation

• Previously we talked about Turing machines and Turing
completeness

• The Church-Turing thesis, proven in the 1930s by Alonzo Church
and Alan Turing, states, roughly, that functions on natural numbers
are "effectively calculable" iff a Turing machine can compute it.

• But are there other models of computation that can "effectively
calculate" numbers? Then they should be Turing complete, right?
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λ Calculus?

Yes! Alonzo Church’s lambda calculus looks very different from a Turing
machine. But it has all of the same capabilities.



A short definition
The lambda calculus looks similar to a functional programming
language (really, it’d be more accurate to say that they look like the
lambda calculus). We’ll define a grammar to describe how to parse the
language, and a very short list of operations used to "evaluate" lambda
calculus expressions.

Remember BNFs from parsing? Here’s the lambda calculus BNF:

e ::= x // variable
| e e // function application
| λx . e // function definition
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Short Examples

• x is just a variable x.
• y is just a variable y. Are these programs equivalent?

(yes)
• x y is an application of "x" to "y". Both "x" and "y" are variables.
• λ x . x defines a function (sometimes called abstraction). It "takes

x" and its body is the expression "x". what kind of function is this?
(looks like the identity function)
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Parentheses

• How do we parse λ x . λ y . x y x ?

▶ Assume function body extends as far right as possible
▶ Successive applications are left associative.

• Equivalent to λ x . (λ y . (x y) x)
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Section 2

Semantics



β Reduction

• quick: value ::= λx.e

• Here’s the first operation we’ll define... it’s how to evaluate an
expression:

▶ (λ x . e) v → e [ v / x ]
▶ in words: if we have a function applied to a value, then
▶ it is "β equivalent" to a substitution:
▶ where we take "e" and replace all "x" with "v".

• Here’s an example:
▶ (λ x . x) (λ y . z) → x [ (λ y . z) / x ]
▶ x [ (λ y . z) / x ] → λ y . z
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β Reduction Rules

In general, when simplifying an application: β reduce the left side, then
the right side if the left side is a value, then if both sides are values, β
reduce the application.

e1 e2 → e′1 e2 only if e1 → e′1

v e2 → v e′2 only if e2 → e′2



Questions?



Now, some linguistics

Let’s look at some sentences!

• Susie lost her book.

• Susie lost her book.
• Susie lost her book. Alice had a book. (whose book did Susie lose?)
• Susie lost her own book. (oh, Susie lost her own book)
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Free and Bound Variables

• What is "y" here? λ x . λ y . y
• What is "x" here? λ x . λ y . x

• Bound variables refer to the argument of the function they are in.
• Free variables refer to a variable declared outside the function

body.
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α Renaming

Let’s say we have (λ x . y) and want to substitute y with "x". How do
we do that?

• What kind of variable is y in (λ x . y) ? (free)
• When we are substituting in new values for free variables, we have

to avoid naming conflicts.
• α equivalent - we can rename variables as long as it doesn’t change

the meaning of the program.
We change the expression to (λ z . y) and then substitute "x" for "y" to
get (λ z . x). Great!
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Exercise

Let’s try a more complex one, try reducing this expression (finding its
normal form):

• ((λ x. λ y. x y) (λ y . y)) (λ z . z)

• (λ w. (λ y . y) w) (λ z . z)
• (λ y . y) (λ z . z)
• (λ z . z)
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Abstract Data Types



Computation?

How do we actually compute in lambda calculus?

Well, we have to create some abstract data types. We’ll define what a
data type is in lambda calculus, and then define functions that return
expressions matching our data types.

Let’s define booleans:
• True ::= λx.λy.x

• False ::= λx.λy.y

Can you write a lambda calculus function defining the conditional? (a
function, given a boolean, P, and Q, returns either P or Q)

What about OR (a function, given two booleans, returns the OR of the
two) (you can use "true" or "false" in your answer)
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Computation Answers

Conditional:

• λc.λp.λq. c p q

• explanation: our boolean "takes in" two arguments. if its true, it
returns the first input, if its false, it returns the second, by
definition.

OR gate:
• λa.λb. a true b

• this should remind you of short circuit evaluation if you’ve learned
that about programming languages. if A, then true, else return B.
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Section 4

Y Combinator



Something’s missing...

Does lambda calculus support recursion?

Let’s look at the Y combinator: Y = λf((λx.f(x x))(λx.f(x x))).
What if we apply a function g to this?

Y g =

• Substituting g for f:
• Y g = (λx. g (x x)) (λx. g (x x))

• Applying:
• Y g = g ((λx. g (x x)) (λx. g (x x)))

• Y g = g (Y g)
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Y Combinator

What is a combinator?
• a "higher-order" function that returns a fixed point of its argument

function.
• "higher-order" means it takes in a function as an argument. For

example a sort function can take in a function telling you how to
order the elements.

• fixed point of a function f (call it fix f) means fix f = f(fix f) =
f(f(fix f)) = ...

Y Combinator is just one example. There are actually infinitely many
combinator functions possible in the lambda calculus.
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Y Combinator Useful for?

Remember, you can’t refer to a function within the function in lambda
calculus (put differently, all functions are anonymous, unnameable to
themselves)

But you can use the Y combinator to pass a function to itself... thereby
always giving it a reference with which to call itself!

Example: factorial = λ f . λ n . cond (is_zero n) (1) (mul n (f (pred n))
Key point: Y factorial 2 = factorial (Y factorial) 2 (!!)



Y Combinator Useful for?

Remember, you can’t refer to a function within the function in lambda
calculus (put differently, all functions are anonymous, unnameable to
themselves)

But you can use the Y combinator to pass a function to itself... thereby
always giving it a reference with which to call itself!

Example: factorial = λ f . λ n . cond (is_zero n) (1) (mul n (f (pred n))
Key point: Y factorial 2 = factorial (Y factorial) 2 (!!)



Y Combinator Useful for?

Remember, you can’t refer to a function within the function in lambda
calculus (put differently, all functions are anonymous, unnameable to
themselves)

But you can use the Y combinator to pass a function to itself... thereby
always giving it a reference with which to call itself!

Example: factorial = λ f . λ n . cond (is_zero n) (1) (mul n (f (pred n))

Key point: Y factorial 2 = factorial (Y factorial) 2 (!!)



Y Combinator Useful for?

Remember, you can’t refer to a function within the function in lambda
calculus (put differently, all functions are anonymous, unnameable to
themselves)

But you can use the Y combinator to pass a function to itself... thereby
always giving it a reference with which to call itself!

Example: factorial = λ f . λ n . cond (is_zero n) (1) (mul n (f (pred n))
Key point: Y factorial 2 = factorial (Y factorial) 2 (!!)



Next time...

We toast the Lisp programmer who pens his thoughts within nests of parentheses.

— ALAN PERLIS (1984)
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