
Week 10

Introducing the “lambda calculus”

Phil

Outline

Definitions

Semantics

Abstract Data Types

Y Combinator

Updates!

Weekly updates:

• no stickers yet :(

Updates!

Weekly updates:
• no stickers yet :(

Section 1

Definitions

Models of Computation

• Previously we talked about Turing machines and Turing
completeness

• The Church-Turing thesis, proven in the 1930s by Alonzo Church
and Alan Turing, states, roughly, that functions on natural numbers
are "effectively calculable" iff a Turing machine can compute it.

• But are there other models of computation that can "effectively
calculate" numbers? Then they should be Turing complete, right?

Models of Computation

• Previously we talked about Turing machines and Turing
completeness

• The Church-Turing thesis, proven in the 1930s by Alonzo Church
and Alan Turing, states, roughly, that functions on natural numbers
are "effectively calculable" iff a Turing machine can compute it.

• But are there other models of computation that can "effectively
calculate" numbers? Then they should be Turing complete, right?

Models of Computation

• Previously we talked about Turing machines and Turing
completeness

• The Church-Turing thesis, proven in the 1930s by Alonzo Church
and Alan Turing, states, roughly, that functions on natural numbers
are "effectively calculable" iff a Turing machine can compute it.

• But are there other models of computation that can "effectively
calculate" numbers? Then they should be Turing complete, right?

λ Calculus?

Yes! Alonzo Church’s lambda calculus looks very different from a Turing
machine. But it has all of the same capabilities.

A short definition
The lambda calculus looks similar to a functional programming
language (really, it’d be more accurate to say that they look like the
lambda calculus). We’ll define a grammar to describe how to parse the
language, and a very short list of operations used to "evaluate" lambda
calculus expressions.

Remember BNFs from parsing? Here’s the lambda calculus BNF:

e ::= x // variable
| e e // function application
| λx . e // function definition

A short definition
The lambda calculus looks similar to a functional programming
language (really, it’d be more accurate to say that they look like the
lambda calculus). We’ll define a grammar to describe how to parse the
language, and a very short list of operations used to "evaluate" lambda
calculus expressions.

Remember BNFs from parsing? Here’s the lambda calculus BNF:

e ::= x // variable
| e e // function application
| λx . e // function definition

Short Examples

• x is just a variable x.
• y is just a variable y. Are these programs equivalent?

(yes)
• x y is an application of "x" to "y". Both "x" and "y" are variables.
• λ x . x defines a function (sometimes called abstraction). It "takes

x" and its body is the expression "x". what kind of function is this?
(looks like the identity function)

Short Examples

• x is just a variable x.
• y is just a variable y. Are these programs equivalent? (yes)
• x y is an application of "x" to "y". Both "x" and "y" are variables.

• λ x . x defines a function (sometimes called abstraction). It "takes
x" and its body is the expression "x". what kind of function is this?
(looks like the identity function)

Short Examples

• x is just a variable x.
• y is just a variable y. Are these programs equivalent? (yes)
• x y is an application of "x" to "y". Both "x" and "y" are variables.
• λ x . x defines a function (sometimes called abstraction). It "takes

x" and its body is the expression "x". what kind of function is this?

(looks like the identity function)

Short Examples

• x is just a variable x.
• y is just a variable y. Are these programs equivalent? (yes)
• x y is an application of "x" to "y". Both "x" and "y" are variables.
• λ x . x defines a function (sometimes called abstraction). It "takes

x" and its body is the expression "x". what kind of function is this?
(looks like the identity function)

Parentheses

• How do we parse λ x . λ y . x y x ?

▶ Assume function body extends as far right as possible
▶ Successive applications are left associative.

• Equivalent to λ x . (λ y . (x y) x)

Parentheses

• How do we parse λ x . λ y . x y x ?
▶ Assume function body extends as far right as possible
▶ Successive applications are left associative.

• Equivalent to λ x . (λ y . (x y) x)

Parentheses

• How do we parse λ x . λ y . x y x ?
▶ Assume function body extends as far right as possible
▶ Successive applications are left associative.

• Equivalent to λ x . (λ y . (x y) x)

Questions?

Section 2

Semantics

β Reduction

• quick: value ::= λx.e

• Here’s the first operation we’ll define... it’s how to evaluate an
expression:

▶ (λ x . e) v → e [v / x]
▶ in words: if we have a function applied to a value, then
▶ it is "β equivalent" to a substitution:
▶ where we take "e" and replace all "x" with "v".

• Here’s an example:
▶ (λ x . x) (λ y . z) → x [(λ y . z) / x]
▶ x [(λ y . z) / x] → λ y . z

β Reduction

• quick: value ::= λx.e

• Here’s the first operation we’ll define... it’s how to evaluate an
expression:
▶ (λ x . e) v → e [v / x]
▶ in words: if we have a function applied to a value, then
▶ it is "β equivalent" to a substitution:
▶ where we take "e" and replace all "x" with "v".

• Here’s an example:
▶ (λ x . x) (λ y . z) → x [(λ y . z) / x]
▶ x [(λ y . z) / x] → λ y . z

β Reduction

• quick: value ::= λx.e

• Here’s the first operation we’ll define... it’s how to evaluate an
expression:
▶ (λ x . e) v → e [v / x]
▶ in words: if we have a function applied to a value, then
▶ it is "β equivalent" to a substitution:
▶ where we take "e" and replace all "x" with "v".

• Here’s an example:
▶ (λ x . x) (λ y . z) → x [(λ y . z) / x]

▶ x [(λ y . z) / x] → λ y . z

β Reduction

• quick: value ::= λx.e

• Here’s the first operation we’ll define... it’s how to evaluate an
expression:
▶ (λ x . e) v → e [v / x]
▶ in words: if we have a function applied to a value, then
▶ it is "β equivalent" to a substitution:
▶ where we take "e" and replace all "x" with "v".

• Here’s an example:
▶ (λ x . x) (λ y . z) → x [(λ y . z) / x]
▶ x [(λ y . z) / x] → λ y . z

β Reduction Rules

In general, when simplifying an application: β reduce the left side, then
the right side if the left side is a value, then if both sides are values, β
reduce the application.

e1 e2 → e′1 e2 only if e1 → e′1

v e2 → v e′2 only if e2 → e′2

Questions?

Now, some linguistics

Let’s look at some sentences!

• Susie lost her book.

• Susie lost her book.
• Susie lost her book. Alice had a book. (whose book did Susie lose?)
• Susie lost her own book. (oh, Susie lost her own book)

Now, some linguistics

Let’s look at some sentences!

• Susie lost her book.
• Susie lost her book.

• Susie lost her book. Alice had a book. (whose book did Susie lose?)
• Susie lost her own book. (oh, Susie lost her own book)

Now, some linguistics

Let’s look at some sentences!

• Susie lost her book.
• Susie lost her book.
• Susie lost her book. Alice had a book. (whose book did Susie lose?)

• Susie lost her own book. (oh, Susie lost her own book)

Now, some linguistics

Let’s look at some sentences!

• Susie lost her book.
• Susie lost her book.
• Susie lost her book. Alice had a book. (whose book did Susie lose?)
• Susie lost her own book. (oh, Susie lost her own book)

Free and Bound Variables

• What is "y" here? λ x . λ y . y
• What is "x" here? λ x . λ y . x

• Bound variables refer to the argument of the function they are in.
• Free variables refer to a variable declared outside the function

body.

Free and Bound Variables

• What is "y" here? λ x . λ y . y
• What is "x" here? λ x . λ y . x
• Bound variables refer to the argument of the function they are in.
• Free variables refer to a variable declared outside the function

body.

α Renaming

Let’s say we have (λ x . y) and want to substitute y with "x". How do
we do that?

• What kind of variable is y in (λ x . y) ? (free)
• When we are substituting in new values for free variables, we have

to avoid naming conflicts.
• α equivalent - we can rename variables as long as it doesn’t change

the meaning of the program.
We change the expression to (λ z . y) and then substitute "x" for "y" to
get (λ z . x). Great!

α Renaming

Let’s say we have (λ x . y) and want to substitute y with "x". How do
we do that?

• What kind of variable is y in (λ x . y) ?

(free)
• When we are substituting in new values for free variables, we have

to avoid naming conflicts.
• α equivalent - we can rename variables as long as it doesn’t change

the meaning of the program.
We change the expression to (λ z . y) and then substitute "x" for "y" to
get (λ z . x). Great!

α Renaming

Let’s say we have (λ x . y) and want to substitute y with "x". How do
we do that?

• What kind of variable is y in (λ x . y) ? (free)
• When we are substituting in new values for free variables, we have

to avoid naming conflicts.
• α equivalent - we can rename variables as long as it doesn’t change

the meaning of the program.
We change the expression to (λ z . y) and then substitute "x" for "y" to
get (λ z . x). Great!

Exercise

Let’s try a more complex one, try reducing this expression (finding its
normal form):

• ((λ x. λ y. x y) (λ y . y)) (λ z . z)

• (λ w. (λ y . y) w) (λ z . z)
• (λ y . y) (λ z . z)
• (λ z . z)

Exercise

Let’s try a more complex one, try reducing this expression (finding its
normal form):

• ((λ x. λ y. x y) (λ y . y)) (λ z . z)
• (λ w. (λ y . y) w) (λ z . z)
• (λ y . y) (λ z . z)
• (λ z . z)

Section 3

Abstract Data Types

Computation?

How do we actually compute in lambda calculus?

Well, we have to create some abstract data types. We’ll define what a
data type is in lambda calculus, and then define functions that return
expressions matching our data types.

Let’s define booleans:
• True ::= λx.λy.x

• False ::= λx.λy.y

Can you write a lambda calculus function defining the conditional? (a
function, given a boolean, P, and Q, returns either P or Q)

What about OR (a function, given two booleans, returns the OR of the
two) (you can use "true" or "false" in your answer)

Computation?

How do we actually compute in lambda calculus?
Well, we have to create some abstract data types. We’ll define what a
data type is in lambda calculus, and then define functions that return
expressions matching our data types.

Let’s define booleans:
• True ::= λx.λy.x

• False ::= λx.λy.y

Can you write a lambda calculus function defining the conditional? (a
function, given a boolean, P, and Q, returns either P or Q)

What about OR (a function, given two booleans, returns the OR of the
two) (you can use "true" or "false" in your answer)

Computation?

How do we actually compute in lambda calculus?
Well, we have to create some abstract data types. We’ll define what a
data type is in lambda calculus, and then define functions that return
expressions matching our data types.

Let’s define booleans:
• True ::= λx.λy.x

• False ::= λx.λy.y

Can you write a lambda calculus function defining the conditional? (a
function, given a boolean, P, and Q, returns either P or Q)

What about OR (a function, given two booleans, returns the OR of the
two) (you can use "true" or "false" in your answer)

Computation Answers

Conditional:

• λc.λp.λq. c p q

• explanation: our boolean "takes in" two arguments. if its true, it
returns the first input, if its false, it returns the second, by
definition.

OR gate:
• λa.λb. a true b

• this should remind you of short circuit evaluation if you’ve learned
that about programming languages. if A, then true, else return B.

Computation Answers

Conditional:
• λc.λp.λq. c p q

• explanation: our boolean "takes in" two arguments. if its true, it
returns the first input, if its false, it returns the second, by
definition.

OR gate:
• λa.λb. a true b

• this should remind you of short circuit evaluation if you’ve learned
that about programming languages. if A, then true, else return B.

Computation Answers

Conditional:
• λc.λp.λq. c p q

• explanation: our boolean "takes in" two arguments. if its true, it
returns the first input, if its false, it returns the second, by
definition.

OR gate:

• λa.λb. a true b

• this should remind you of short circuit evaluation if you’ve learned
that about programming languages. if A, then true, else return B.

Computation Answers

Conditional:
• λc.λp.λq. c p q

• explanation: our boolean "takes in" two arguments. if its true, it
returns the first input, if its false, it returns the second, by
definition.

OR gate:
• λa.λb. a true b

• this should remind you of short circuit evaluation if you’ve learned
that about programming languages. if A, then true, else return B.

Section 4

Y Combinator

Something’s missing...

Does lambda calculus support recursion?

Let’s look at the Y combinator: Y = λf((λx.f(x x))(λx.f(x x))).
What if we apply a function g to this?

Y g =

• Substituting g for f:
• Y g = (λx. g (x x)) (λx. g (x x))

• Applying:
• Y g = g ((λx. g (x x)) (λx. g (x x)))

• Y g = g (Y g)

Something’s missing...

Does lambda calculus support recursion?
Let’s look at the Y combinator: Y = λf((λx.f(x x))(λx.f(x x))).
What if we apply a function g to this?

Y g =

• Substituting g for f:
• Y g = (λx. g (x x)) (λx. g (x x))

• Applying:
• Y g = g ((λx. g (x x)) (λx. g (x x)))

• Y g = g (Y g)

Something’s missing...

Does lambda calculus support recursion?
Let’s look at the Y combinator: Y = λf((λx.f(x x))(λx.f(x x))).
What if we apply a function g to this?

Y g =

• Substituting g for f:
• Y g = (λx. g (x x)) (λx. g (x x))

• Applying:
• Y g = g ((λx. g (x x)) (λx. g (x x)))

• Y g = g (Y g)

Y Combinator

What is a combinator?
• a "higher-order" function that returns a fixed point of its argument

function.
• "higher-order" means it takes in a function as an argument. For

example a sort function can take in a function telling you how to
order the elements.

• fixed point of a function f (call it fix f) means fix f = f(fix f) =
f(f(fix f)) = ...

Y Combinator is just one example. There are actually infinitely many
combinator functions possible in the lambda calculus.

Y Combinator

What is a combinator?
• a "higher-order" function that returns a fixed point of its argument

function.
• "higher-order" means it takes in a function as an argument. For

example a sort function can take in a function telling you how to
order the elements.

• fixed point of a function f (call it fix f) means fix f = f(fix f) =
f(f(fix f)) = ...

Y Combinator is just one example. There are actually infinitely many
combinator functions possible in the lambda calculus.

Y Combinator Useful for?

Remember, you can’t refer to a function within the function in lambda
calculus (put differently, all functions are anonymous, unnameable to
themselves)

But you can use the Y combinator to pass a function to itself... thereby
always giving it a reference with which to call itself!

Example: factorial = λ f . λ n . cond (is_zero n) (1) (mul n (f (pred n))
Key point: Y factorial 2 = factorial (Y factorial) 2 (!!)

Y Combinator Useful for?

Remember, you can’t refer to a function within the function in lambda
calculus (put differently, all functions are anonymous, unnameable to
themselves)

But you can use the Y combinator to pass a function to itself... thereby
always giving it a reference with which to call itself!

Example: factorial = λ f . λ n . cond (is_zero n) (1) (mul n (f (pred n))
Key point: Y factorial 2 = factorial (Y factorial) 2 (!!)

Y Combinator Useful for?

Remember, you can’t refer to a function within the function in lambda
calculus (put differently, all functions are anonymous, unnameable to
themselves)

But you can use the Y combinator to pass a function to itself... thereby
always giving it a reference with which to call itself!

Example: factorial = λ f . λ n . cond (is_zero n) (1) (mul n (f (pred n))

Key point: Y factorial 2 = factorial (Y factorial) 2 (!!)

Y Combinator Useful for?

Remember, you can’t refer to a function within the function in lambda
calculus (put differently, all functions are anonymous, unnameable to
themselves)

But you can use the Y combinator to pass a function to itself... thereby
always giving it a reference with which to call itself!

Example: factorial = λ f . λ n . cond (is_zero n) (1) (mul n (f (pred n))
Key point: Y factorial 2 = factorial (Y factorial) 2 (!!)

Next time...

We toast the Lisp programmer who pens his thoughts within nests of parentheses.

— ALAN PERLIS (1984)

	Definitions
	Semantics
	Abstract Data Types
	Y Combinator

