
Week 5

Parsing

Hassam

Outline

Compilers

Parsing

Section 1

Compilers

C to executable?

How do you go from "code" to something the computer understands?

• What does the computer even understand?
• What is code?

C to executable?

How do you go from "code" to something the computer understands?
• What does the computer even understand?

• What is code?

C to executable?

How do you go from "code" to something the computer understands?
• What does the computer even understand?
• What is code?

Assembly

@nebu addressed this two weeks ago, but let’s review.

Code?

1 int main(int argc, char** argv) {
2 puts("Hello, World!");
3 return 0;
4 }

Code?

1 def main():
2 print("Hello, world!")

What are the steps in between?

Lexer

Parser

Semantic Analysis Codegen

What are the steps in between?

Lexer Parser

Semantic Analysis Codegen

What are the steps in between?

Lexer Parser

Semantic Analysis

Syntax Errors
Type Checking

Lifetime Analysis

Codegen

What are the steps in between?

Lexer Parser

Semantic Analysis Codegen

Assembly!
Optimizations

Questions?

Section 2

Parsing

Remember CFGs?

• So far, we have been using CFGs without any reason.
• Soon, we’ll use them to prove properties of computation!

• But, sometimes you just want to specify a grammar and parse it,
CFGs are useful here too!

• CFGs are ugly though, and we’re leaving the world of theory, so we
have something better.

Remember CFGs?

• So far, we have been using CFGs without any reason.
• Soon, we’ll use them to prove properties of computation!
• But, sometimes you just want to specify a grammar and parse it,

CFGs are useful here too!
• CFGs are ugly though, and we’re leaving the world of theory, so we

have something better.

Extended Backus–Naur form

1 file = line { line } <EOF>.
2 line = [assignment | print | reset] <NL>.
3 assignment = var ":=" expression.
4 print = "PRINT" var.
5 reset = "RESET".
6 expression = term { addop term }.
7 term = factor { mulop factor }.
8 factor = "(" expression ")" | var | number.
9 addop = "+" | "-".

10 mulop = "*".
11 var = letter { letter | digit }.
12 number = ["-"] digit { digit }.
13 letter = ('A'-'Z') | ('a'-'z').
14 digit = ('0'-'9').

Parse Tree
file

line

assignment

var

"x"

"=" expression

term

...

12

addop

"+"

term

...

15

line

print

"PRINT" var

"x"

Parse Tree

1 x = 12 + 15
2 PRINT x

So, PDAs?

• This "language" is representable by a CFG, so should we use a
PDA to parse it?

• Let’s not.

So, PDAs?

• This "language" is representable by a CFG, so should we use a
PDA to parse it?

• Let’s not.

LL Parsing

• Reading Left to right, performing a Leftmost processing.
• Formally, this type of parser is equivalent to a deterministic

pushdown automata. But, much easier to write.
• Requires our grammar to follow some rules, but all grammars

(parseable by DPDAs) can be (annoyingly) converted to do so.

Easy to write?

So easy to write:
1 start = F | '(' start '+' F ')'
2 F = 'a'

This parses expressions of the form: (a + a), ((a + a) + a), etc.

How do we code this?

1 parseF 'a':xs = F, xs
2 parseF [] = error
3

4 parseS '(':xs = {
5 S1, '+':restS = parseS(xs)
6 F, ')':rest = parseF(restS)
7 return (S (S1, F)), rest
8 }
9 parseS x = {

10 F, rest = parseF(x)
11 return S(F), rest
12 }
13 parseS [] = error

1 start = F
2 | '(' start '+' F ')'
3 F = 'a'

What goes wrong?

• Our code from before is valid and generalizable, but it makes some
assumptions.

• It assumes that there is no "left recursion"
• It assumes that there are no common prefixes
• It assumes that you can look one character ahead and determine

what to do next. This is formally known as LL(1).
• It assumes there’s no ambiguity.

Which of these can we fix?

What goes wrong?

• Our code from before is valid and generalizable, but it makes some
assumptions.

• It assumes that there is no "left recursion"

• It assumes that there are no common prefixes
• It assumes that you can look one character ahead and determine

what to do next. This is formally known as LL(1).
• It assumes there’s no ambiguity.

Which of these can we fix?

What goes wrong?

• Our code from before is valid and generalizable, but it makes some
assumptions.

• It assumes that there is no "left recursion"
• It assumes that there are no common prefixes

• It assumes that you can look one character ahead and determine
what to do next. This is formally known as LL(1).

• It assumes there’s no ambiguity.
Which of these can we fix?

What goes wrong?

• Our code from before is valid and generalizable, but it makes some
assumptions.

• It assumes that there is no "left recursion"
• It assumes that there are no common prefixes
• It assumes that you can look one character ahead and determine

what to do next. This is formally known as LL(1).

• It assumes there’s no ambiguity.
Which of these can we fix?

What goes wrong?

• Our code from before is valid and generalizable, but it makes some
assumptions.

• It assumes that there is no "left recursion"
• It assumes that there are no common prefixes
• It assumes that you can look one character ahead and determine

what to do next. This is formally known as LL(1).
• It assumes there’s no ambiguity.

Which of these can we fix?

What goes wrong?

• Our code from before is valid and generalizable, but it makes some
assumptions.

• It assumes that there is no "left recursion"
• It assumes that there are no common prefixes
• It assumes that you can look one character ahead and determine

what to do next. This is formally known as LL(1).
• It assumes there’s no ambiguity.

Which of these can we fix?

Ambiguity?

1 void func() {
2 a < b , c > d;
3 }

Is this a template instantiation? Or are we using operator< and
operator> on two variables?
It’s both.

Ambiguity?

1 void func() {
2 a < b , c > d;
3 }

Is this a template instantiation? Or are we using operator< and
operator> on two variables?

It’s both.

Ambiguity?

1 void func() {
2 a < b , c > d;
3 }

Is this a template instantiation? Or are we using operator< and
operator> on two variables?
It’s both.

Fixing bad grammars

It turns out, we can fix them all, except for the last one. We need a
more powerful tool for ambiguity.

• It is possible to rewrite anything left-recursive to be
non-left-recursive.

• Removing common prefixes is called "left factoring".
• We can change from an LL(1) parser to an LL(k) parser, and "look

ahead" k steps. This becomes messier and messier the further we
look ahead though.

Nearly every mainstream programming language is LL(1). They are
convenient to parse, and even more convenient to write.

Fixing left recursion

1 start = start '+' | 'i'

This parses i+++++, and onwards. How do we get rid of the left
recursion?

The general strategy is:
• S = 'x' becomes S = 'x'S_new
• S = S'x' becomes S_new = 'x'S_new
• Add S_new = ϵ

1 start = 'i' start_new
2 start_new = '+'start_new | ϵ

Fixing left recursion

1 start = start '+' | 'i'

This parses i+++++, and onwards. How do we get rid of the left
recursion?
The general strategy is:

• S = 'x' becomes S = 'x'S_new
• S = S'x' becomes S_new = 'x'S_new
• Add S_new = ϵ

1 start = 'i' start_new
2 start_new = '+'start_new | ϵ

Fixing left recursion

1 start = start '+' | 'i'

This parses i+++++, and onwards. How do we get rid of the left
recursion?
The general strategy is:

• S = 'x' becomes S = 'x'S_new
• S = S'x' becomes S_new = 'x'S_new
• Add S_new = ϵ

1 start = 'i' start_new
2 start_new = '+'start_new | ϵ

Fixing common prefixes

1 start = 'a' B | 'a' 'd'
2 B = 'c'

Becomes:
1 start = 'a' D
2 D = B | 'd'
3 B = 'c'

Fixing common prefixes

1 start = 'a' B | 'a' 'd'
2 B = 'c'

Becomes:
1 start = 'a' D
2 D = B | 'd'
3 B = 'c'

Solving Ambiguity

Remember our CFG from last week?

S → ε | Sab | aSb | aSbS
| Sba | bSa | bSaS

We can try to fix the left recursion and the common prefixes, but we’ll
get stuck in an infinite loop. This grammar is "ambiguous", we would
need to look ahead infinitely many steps to parse it. We need
non-determinism to parse this.

Backtracking to the rescue?
1 def parseS(inp):
2 if inp == '': return S(), ''
3 try:
4 s, rest = parseS(inp)
5 if rest[0] == 'a':
6 assert rest[1] == 'b'
7 return S(s, 'a', 'b'), rest[2:]
8 elif rest[0] == 'b':
9 assert rest[1] == 'a'

10 return S(s, 'b', 'a'), rest[2:]
11 else:
12 assert False
13 except Exception:
14 assert inp[0] == 'a'
15 try:
16 s, rest = parseS(inp)
17 ...

Yikes

This is messy, and it’s slow! Try finishing it by yourself.
Most modern compilers for non-LL(1) languages [C and C++ :(] use
handwritten backtracking parsers like this one.

Writing parsers for fun and profit

Writing parsers is actually very fun! I have had four interviews this
semester that required writing a custom parser.

• Try writing parsers for some of the simple examples we discussed
today in your favorite language.

• Go meta. Write a "parser compiler" that takes some basic version
of EBNF and turns it into code that runs a parser.

• So much more to explore. LR(k), LALR(k), etc.
• Parsing is "solved", more interesting problems in compilers now.

Goodbye

Any sufficiently complicated C or Fortran program contains an ad hoc,

informally-specified, bug-ridden, slow implementation of half of Common Lisp.

— Greenspun’s tenth rule of programming (1993)

	Compilers
	Parsing

