
Week 9

Reductions

Anakin



Outline

Review

Reductions



Updates!

Weekly updates:
• Stickers have been ordered
• I’ll let everyone know when they get here



Section 1

Review



What We Know

• We say that M recognizes/accepts L if for any input w ∈ L, M
accepts w.
▶ If w ∈ L, then M must accept w
▶ If w /∈ L, then M can reject or even never halt

• M decides L if for any input w, M accepts if w ∈ L and rejects
otherwise.
▶ If w ∈ L, then M must accept w
▶ If w /∈ L, then M must reject w
▶ Either way, M must halt on all inputs



What We Know

• L is recognizable if there exists some TM M that recognizes it
• L is decidable if there exists some TM M that decides it
• Some languages are unrecognizable or undecidable



Key Examples

• HALTTM = { ⟨M,w⟩ |M is a TM and M halts on input w }
▶ We showed this language is undecidable

• ATM = { ⟨M,w⟩ |M is a TM and M accepts w }
▶ We showed this language is undecidable

• ATM = complement of ATM
▶ We showed this language is unrecognizable



How Do We Figure Out More?

• The proofs for all of these were long and confusing
• What if we wanted to prove other languages are

undecidable/unrecognizable?
▶ Do you want to do all that work again?
▶ I don’t

• What if we could leverage our previous proofs?



Section 2

Reductions





What Is A Reduction?

• As stupid as it is, the previous proof follows the idea of a reduction
• We assume something and reach a conclusion that contradicts a

known result, thus proving our assumption was incorrect



What Is A Reduction?

• A decidability reduction is a proof of the following form:
▶ Suppose language L is decidable, then there exists a TM M that

decides it
▶ We can use M as a blackbox in some other algorithm to decide your

favorite undecidable problem
▶ This contradicts the fact that your chosen problem is undecidable
▶ Thus L is undecidable



Reductions = Algorithms

• This is the format of a Turing Reduction1

• You are given access to some blackbox oracle
▶ Imagine the oracle like some library function you import
▶ You know what it takes as input and gives as output
▶ You just don’t know exactly how it works

• You write an algorithm using this oracle
• If you are reducing from A to B, then your algorithm should accept

if and only if the input is in language A

1CS 374 talks about mapping reductions, which are equivalent but more confusing



Difficulty

• Reductions play an extremely central in complexity theory since it
allows to talk about how hard problems are
• If we can reduce Problem A to Problem B, solving A cannot be

harder than solving B
▶ Solving B gives a solution to A

• Thus if A reduces to B and we know something about A, we learn:
▶ if A is undecidable, then B is undecidable
▶ if A is unrecognizable, then B is unrecognizable



Decidability Reduction

ETM = { ⟨M⟩ |M is a TM and L(M) = ∅ }

• We will show this is undecidable using a reduction
• We know that the Halting Problem is undecidable, so let’s use that
• Suppose that E(⟨M⟩) is a TM that decides ETM

• We will design a TM H(⟨M,w⟩) that decides the Halting Problem



Decidability Reduction

Suppose that E(⟨M⟩) is a TM that decides ETM

CreateM1(⟨M,w⟩):
Create a TM M1 that does the following:

On input w, accept if M(w) halts
else, reject

return ⟨M1⟩

H(⟨M,w⟩):
⟨M1⟩ ← CreateM1(⟨M,w⟩)
run E(⟨M1⟩)
if E accepts, reject; if E rejects, accept

E accepts ⇐⇒ L(M1) is empty ⇐⇒ M does not halt on input w



Recognizability Reduction

Recall:
• ATM = { ⟨M,w⟩ |M is a TM and M accepts w }
• ATM is recognizable but not decidable
• So ATM is not recognizable

We also have the following
• A reduces to B if and only if A reduces to B

• If A reduces to B and B is recognizable, then A is recognizable
• If A reduces to B and A is unrecognizable, then B is unrecognizable

So to show that some problem B is unrecognizable, we can show that
ATM reduces to B since that’s the same as showing ATM reduces to B



Recognizability Reduction

EQTM = { ⟨M1, M2⟩ |M1, M2 are TMs and L(M1) = L(M2) }

Using what we said before, we can show that EQTM is not recognizable
by showing that ATM reduces to EQTM



Recognizability Reduction
Suppose that EQ(⟨M1,M2⟩) is a TM that recognizes

EQTM = { ⟨M1, M2⟩ |M1, M2 are TMs and L(M1) ̸= L(M2) }

We will reduce from ATM as follows. Given M and w we will construct
the following two machines

M1(⟨M,w⟩):
on any input:

reject

M2(⟨M,w⟩):
on any input:

return M(w)



Recognizability Reduction

We build a machine A that recognizes ATM

M1(w):
on any input:

reject

M2(w):
on any input:

return M(w)

A(⟨M,w):
Create M1, M2 as described
return EQ(⟨M1,M2⟩)

M accepts w ⇐⇒ EQ(⟨M1,M2⟩) accepts ⇐⇒ L(M1) ̸= L(M2)



Questions?



Questions!

1: Recall L is co-recognizable if there exists some TM M that
recognizes it’s complement Σ∗ \ L
Modify the previous proof and reduce ATM to EQ(⟨M1,M2⟩) to show
that EQ(⟨M1,M2⟩) is not co-recognizable)

2: Show that if some language A is recognizable, and A reduces to A,
then A is decidable



So long and thanks for all the fish!

— DOUGLAS ADAMS (1979)


	Review
	Reductions

