Week 9 Reductions

Anakin

Outline

Review

Reductions

Σ

Updates!

Weekly updates:

- Stickers have been ordered
- I'll let everyone know when they get here

Section 1

Review

What We Know

- We say that M recognizes/accepts L if for any input $w \in L, M$ accepts w.
 - If $w \in L$, then M must **accept** w
 - ▶ If $w \notin L$, then M can **reject** or even **never halt**
- *M* decides *L* if for any input w, *M* accepts if $w \in L$ and rejects otherwise.
 - If $w \in L$, then M must **accept** w
 - ▶ If $w \notin L$, then M must **reject** w
 - \blacktriangleright Either way, M must halt on all inputs

What We Know

- L is **recognizable** if there exists some TM M that recognizes it
- L is **decidable** if there exists some TM M that decides it
- Some languages are unrecognizable or undecidable

Key Examples

- $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$
 - ▶ We showed this language is undecidable
- $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
 - ▶ We showed this language is undecidable
- $\overline{A_{\rm TM}}$ = complement of $A_{\rm TM}$
 - ▶ We showed this language is unrecognizable

How Do We Figure Out More?

- The proofs for all of these were long and confusing
- What if we wanted to prove other languages are undecidable/unrecognizable?
 - ▶ Do you want to do all that work again?
 - ▶ I don't
- What if we could leverage our previous proofs?

Section 2

Reductions

Proof that π is irrational

If π is rational, then it can be expressed as a fraction $\frac{a}{b}$, where $(a, b \in \mathbb{Z}, b \neq 0)$.

However, this contradicts Johann Heinrich Lambert's 1761 proof that π is irrational.

Therefore, π must be irrational. \Box

What Is A Reduction?

- As stupid as it is, the previous proof follows the idea of a reduction
- We assume something and reach a conclusion that contradicts a known result, thus proving our assumption was incorrect

What Is A Reduction?

- A **decidability** reduction is a proof of the following form:
 - \blacktriangleright Suppose language L is decidable, then there exists a TM M that decides it
 - \blacktriangleright We can use M as a blackbox in some other algorithm to decide your favorite undecidable problem
 - ▶ This contradicts the fact that your chosen problem is undecidable
 - \blacktriangleright Thus *L* is undecidable

Reductions = Algorithms

- This is the format of a **Turing Reduction**¹
- You are given access to some blackbox oracle
 - ▶ Imagine the oracle like some library function you import
 - You know what it takes as input and gives as output
 - You just don't know exactly how it works
- You write an algorithm using this oracle
- If you are reducing from A to B, then your algorithm should accept **if and only if** the input is in language A

 $^{^{1}}$ CS 374 talks about mapping reductions, which are equivalent but more confusing

Difficulty

- Reductions play an extremely central in complexity theory since it allows to talk about how **hard problems** are
- If we can reduce Problem A to Problem B, solving A cannot be harder than solving B
 - \blacktriangleright Solving *B* gives a solution to *A*
- Thus if A reduces to B and we know something about A, we learn:
 - \blacktriangleright if A is undecidable, then B is undecidable
 - \blacktriangleright if A is unrecognizable, then B is unrecognizable

Decidability Reduction

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

- We will show this is undecidable using a reduction
- We know that the Halting Problem is undecidable, so let's use that
- Suppose that $E(\langle M \rangle)$ is a TM that decides $E_{\rm TM}$
- We will design a TM $H(\langle M, w \rangle)$ that decides the Halting Problem

Decidability Reduction

Suppose that $E(\langle M \rangle)$ is a TM that decides $E_{\rm TM}$

```
CREATEM<sub>1</sub>(\langle M, w \rangle):
   Create a TM M_1 that does the following:
          On input w, accept if M(w) halts
          else, reject
   return \langle M_1 \rangle
H(\langle M, w \rangle):
   \overline{\langle M_1 \rangle} \leftarrow \text{CREATEM}_1(\langle M, w \rangle)
   run E(\langle M_1 \rangle)
   if E accepts, reject; if E rejects, accept
```

E accepts $\iff L(M_1)$ is empty $\iff M$ does not halt on input w

Recall:

- $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
- $A_{\rm TM}$ is recognizable but not decidable
- So $\overline{A_{\text{TM}}}$ is not recognizable

We also have the following

- A reduces to B if and only if \overline{A} reduces to \overline{B}
- If A reduces to B and B is recognizable, then A is recognizable

• If A reduces to B and A is unrecognizable, then B is unrecognizable So to show that some problem B is unrecognizable, we can show that A_{TM} reduces to \overline{B} since that's the same as showing $\overline{A_{\text{TM}}}$ reduces to B

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Using what we said before, we can show that EQ_{TM} is not recognizable by showing that A_{TM} reduces to $\overline{EQ_{\text{TM}}}$

Suppose that $\overline{EQ}(\langle M_1, M_2 \rangle)$ is a TM that recognizes

 $\overline{EQ_{\text{TM}}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) \neq L(M_2) \}$

We will reduce from A_{TM} as follows. Given M and w we will construct the following two machines

We build a machine A that recognizes $A_{\rm TM}$

 $\frac{M_2(w)}{\text{on any input:}}$ return M(w)

 $\frac{A(\langle M, w):}{\text{Create } M_1, M_2 \text{ as described}}$ return $\overline{EQ}(\langle M_1, M_2 \rangle)$

M accepts $w \iff \overline{EQ}(\langle M_1, M_2 \rangle)$ accepts $\iff L(M_1) \neq L(M_2)$

Questions?

Questions!

1: Recall L is **co-recognizable** if there exists some TM M that recognizes it's complement $\Sigma^* \setminus L$ Modify the previous proof and reduce A_{TM} to $EQ(\langle M_1, M_2 \rangle)$ to show that $EQ(\langle M_1, M_2 \rangle)$ is not co-recognizable)

2: Show that if some language A is recognizable, and A reduces to \overline{A} , then A is decidable

So long and thanks for all the fish!

— DOUGLAS ADAMS (1979)

