Week 1
 Regular Languages Pt. 1

Anakin

Outline

Regex

Automata

Updates

- Why Sipser?
- Combinational Algorithms
- Discord

Section 1

Regex

Regular Expressions

$$
\Sigma^{*}=(0+1)^{*}=\text { The set of all finite binary strings }
$$

- Many of us have probably seen regex appear in programming when we want to do string matching
- Turns out that languages (a set of strings) are an extremely powerful idea at the center of CS
- Languages recognized by regular expressions are called regular languages
- Let's look at a simplified version of regex with only 3 operations

Recursively build regex:

- Base Cases: The emptyset: \emptyset, the empty string ε, or a string s
- Operations:
- Concatenation: We can attach strings in one language R_{1} to strings in another R_{2} and form $R_{1} R_{2}$
- Example: $R_{1}=\{0,00\}, R_{2}=\{1,11\}$, $R_{1} R_{2}=\{01,011,001,0011\}$
- Union: We take one language R_{1} and add all the words of another language another $R 2$ and form $R_{1}+R_{2}$
- Example: $R_{1}=\{0,00\}, R_{2}=\{1,11\}$, $R_{1}+R_{2}=\{0,00,1,11\}$
- Star: We take a language R and string words in itself 0 or more times and form R^{*}
- Example: $R=\{0,1\}, R^{*}=$ every possible finite binary string!

Questions?

Questions!

Try to write out some strings in the following languages and come up with a more intuitive way to understand the language Example:

$$
\begin{aligned}
0^{*}+0^{*} 10^{*} & =\{\varepsilon, 0,00,000, \ldots, 1,01,10,0010, \ldots\} \\
& =\text { Strings with at most a single } 1
\end{aligned}
$$

Note: We use $\Sigma=(0+1)$

1. $(\Sigma \Sigma \Sigma)^{*}$
2. $0+1+0 \Sigma^{*} 0+1 \Sigma^{*} 1$

Section 2

Automata

Deterministic Finite Automata

Problem: How can we tell if a string is in some regular language? Solution: Deterministic Finite Automata (DFA)

We could define this fully formally but these are better introduced an intuitive level
GOAL: Identify binary strings containing an odd number of 1's

Odd number of 1's

Odd number of 1's

Odd number of 1's

Questions?

Questions!

- Remember those regex from before?
- Turns out regex are equivalent to DFAs!!

Every regex can be turned into a DFA, and vice versa
Try to come up with DFAs for some of the following regular expressions:

1. $0^{*}+0^{*} 10^{*}$
2. $(\Sigma \Sigma \Sigma)^{*}$
3. $0+1+0 \Sigma^{*} 0+1 \Sigma^{*} 1$

See y'all next week!

