Burst Codes

Alex Broihier, Porter Shawver

Outline

Cyclic Codes

Fire Codes

Interleaved Codes

Unary Codes

Section 1

> Cyclic Codes

Burst Errors

- Burst Description (P, L) where P is the error, L is the starting index
- $E=[0,1,1,0,0,1]$ is the error in some message
- $(11001,2)$ describes E
- More common in the real world (think scratching a CD, the internet dropping in the middle of a message, etc.)

What are Cyclic Codes

- Invariant under rotation
- 011001, 101100, 010110, 001011, 100101, 110010 all the same
- When considering cycles with burst errors, the burst description is no longer unique
- $E=[0,1,1,0,0,1]$ is described by (11001, 2), (100101, 3), and (1011, 6)
- $E \xrightarrow{\text { Rotated } \mathrm{To}}[1,0,0,1,0,1]$ is described by $(1011,4)$
- $E \xrightarrow{\text { Rotated To }}[1,0,1,1,0,0]$ is described by $(100101,4)$

Generating Functions for Linear Cyclic Codes

- Coefficient of each term corresponds to a corresponding digit in code
- $g(x)=1 x^{0}+0 x^{1}+1 x^{2}+1 x^{3}+0 x^{4}$ corresponds to 10110
- A multiplication by x corresponds to a rotation:

$$
\begin{aligned}
x \cdot g(x) & =1 x^{1}+0 x^{2}+1 x^{3}+1 x^{4}+0 x^{5} \\
& =1 x^{1}+0 x^{2}+1 x^{3}+1 x^{4}+0 x^{0} \\
& =0 x^{0}+1 x^{1}+0 x^{2}+1 x^{3}+1 x^{4} \\
& \rightarrow 01011
\end{aligned}
$$

Cyclic Codespace

Let w be the original, un-encoded message.

$$
w \xrightarrow{\text { Encode }} w \cdot g(x) \xrightarrow{\text { Transmission Error }} w \cdot g(x)+e(x) \xrightarrow{\operatorname{Mod} g(x)} e(x)
$$

- $e(x)$ obtained as remainder when dividing by $g(x)$

Example

- Say we want to encode $\{00,10,01,11\}$
- Let's pick $g(x)=1+x^{2}$ as our generator

00	10	01	11
$\rightarrow 0$	1	x	$1+x$
$\rightarrow 0\left(1+x^{2}\right)$	$1\left(1+x^{2}\right)$	$x\left(1+x^{2}\right)$	$(1+x)\left(1+x^{2}\right)$
$\rightarrow 0$	$1+x^{2}$	$x+x^{3}$	$1+x+x^{2}+x^{3}$
$\rightarrow 0000$	1010	0101	1111

- If I receive 0100, I know an error occurred

Example

1. Codewords: $\{0000,1010,0101,1111\}$
2. Generator Polynomial: $g(x)=1+x^{2}$
3. Receive 1110

$$
\begin{aligned}
& 1110 \rightarrow 1+x+x^{2} \quad \rightarrow \frac{1+x+x^{2}}{1+x^{2}}=1+\frac{x}{1+x^{2}} \quad \rightarrow x \text { is the remainder } \\
& \rightarrow \text { error }=0100 \rightarrow \text { original message }=1010
\end{aligned}
$$

Cosets

- The set of all errors that differ by a code word: $e_{1}=e_{2}+c$
- Ex: for the previous example, the error 0100 is in the same coset as 1110, 0001 and 1011, by adding the codewords 1010, 0101, and 1111 respectively.

Lemma

A linear code C is an ℓ-burst-error-correcting code if distinct burst errors of length $\leq \ell$ are in distinct cosets of C.

Cosets Hand-Wavy Intuition

Section 2

Fire Codes

Fire Codes

- Type of burst error correcting code.
- Appeared originally in Philip Fire's 1959 dissertation, A class of multiple-error-correcting binary codes for non-independent errors.

Building a Fire Code

- Let $p(x)$ be a prime/irreducible polynomial of degree m over \mathbb{F}_{2}.
- An irreducible polynomial cannot be factored into products of non-constant polynomials.
- Let ρ be the smallest integer such that $p(x) \mid\left(1+x^{\rho}\right) . \rho$ is called the period.
- Let ℓ be a positive integer not divisible by ρ with $\ell \leq m$.
- $g(x)=\left(1+x^{2 \ell-1}\right) p(x)$ is the generator polynomial for a Fire code.

Example

- Start with $p(x)=1+x+x^{3}$. (Note: $m=3$.)
- We can find ρ with $\rho=2^{m}-1$, so $\rho=2^{3}-1=7$.
- Select $\ell=3$. We have $\ell \leq m$ and $p \nmid(2 \ell-1)$, so this choice works.
- Thus,

$$
\begin{aligned}
g(x) & =\left(1+x^{2 \ell-1}\right) p(x) \\
& =\left(1+x^{5}\right)\left(1+x+x^{3}\right) \\
& =1+x+x^{3}+x^{5}+x^{6}+x^{8}
\end{aligned}
$$

Correct codes of length $\leq \ell$

Theorem

Fire codes can correct burst errors of length ℓ.

Proof

General idea: proof by contradiction of the lemma from before that distinct burst errors must be in distinct cosets.

Lemma
$\left(1+x^{2 \ell-1}\right)$ and $p(x)$ (the factors of $\left.g(x)\right)$ are relatively prime.

Proof

- Take two distinct burst errors with lengths $\ell_{1}, \ell_{2}<\ell$ represented by

$$
\begin{aligned}
& a(x)=1+a_{1} x+a_{2} x^{2}+\cdots+a_{\ell_{1}-2}+x^{\ell_{1}-1} \\
& b(x)=1+b_{1} x+b_{2} x^{2}+\cdots+b_{\ell_{2}-2}+x^{\ell_{2}-1}
\end{aligned}
$$

- These errors could be anywhere, so we write $x^{i} a(x)$ and $x^{j} b(x)$ for some $i, j<n$ representing start of error ($W L O G$ assume $i<j$).
- Suppose for contradiction $x^{i} a(x)$ and $x^{j} b(x)$ are in the same coset. $\left(x^{i} a(x)=x^{j} b(x)+c\right.$ for some code word c)
- Then their sum, $x^{i} a(x)+x^{j} b(x)$, is a polynomial $v(x)$ in the code.
- Let q, b such that $j-i=q(2 \ell-1)+b$.

Proof

- Then

$$
\begin{aligned}
v(x) & =x^{i} a(x)+x^{j} b(x) \\
& =x^{i} a(x)+x^{j} b(x)+2 x^{b+i} b(x) \\
& =x^{i}\left(a(x)+x^{b} b(x)\right)+x^{b+i} b(x)\left(1+x^{q(2 \ell-1)}\right)
\end{aligned}
$$

- Because $v(x)$ represents code word, it is divisible by $g(x)$.
- Because the factors of $g(x)$ are relatively prime, $v(x)$ must be divisible by $1+x^{2 \ell-1}$.
- So $a(x)+x^{b} b(x)$ is divisible by $1+x^{2 \ell-1}$ (or is 0). Let $d(x)$ be the quotient with degree δ.

Proof

$$
\overbrace{d(x)}^{\delta} \overbrace{\left(1+x^{2 \ell-1}\right)}^{2 \ell-1}=\overbrace{a(x)}^{\ell_{1}-1}+\overbrace{x^{b} b(x)}^{b+\ell_{2}-1}
$$

Proof

$$
\overbrace{2 \ell-1+\delta}^{d(x)} \overbrace{\left(x^{2 \ell-1}+1\right)}^{2 \ell-1}=\overbrace{a(x)}^{\ell_{1}-1}+\overbrace{x^{b} b(x)}^{b+\ell_{2}-1}
$$

$$
\begin{aligned}
& \ell_{1}-1<2 \ell-1 \\
& \Longrightarrow b+\ell_{2}-1=2 \ell-1+\delta \\
& \Longrightarrow \quad b=2 \ell-\ell_{2}+\delta \\
& \Longrightarrow \quad b \geq \ell+\delta \\
& \Downarrow \\
& b>\ell_{1}-1 \text { and } b>\delta
\end{aligned}
$$

Proof

$$
b>\ell_{1}-1 \text { and } b>\delta
$$

- Using $b>\ell_{1}-1$, we know x^{b} appears in the expansion of $a(x)+x^{b} b(x)$:

$$
\begin{aligned}
& 1+a_{1} x+a_{2} x^{2}+\cdots+a_{\ell_{1}-2}+x^{\ell_{1}-1} \\
& \quad+x^{b}\left(1+b_{1} x+b_{2} x^{2}+\cdots+b_{\ell_{2}-2}+x^{\ell_{2}-1}\right)
\end{aligned}
$$

- Then, using $b>\delta$, we know $d(x)$ does not have x^{b}, so $a(x)+x^{b} b(x)$ is not divisible by $d(x)$.
- Recall this means $a(x)+x^{b} b(x)=0$.

Proof

$$
\begin{aligned}
a(x)+x^{b} b(x)= & 1+a_{1} x+a_{2} x^{2}+\cdots+a_{\ell_{1}-2}+x^{\ell_{1}-1} \\
& +x^{b}\left(1+b_{1} x+b_{2} x^{2}+\cdots+b_{\ell_{2}-2}+x^{\ell_{2}-1}\right) \\
= & 0 \\
& \left.\Longrightarrow b=0 \quad \text { (remember, we're in } \mathbb{F}_{2}\right) \\
& \Longrightarrow a(x)=b(x) \\
& \Longrightarrow \text { Contradiction! }
\end{aligned}
$$

So, if two errors are distinct, they are in different cosets.

Example and Analysis

- Recall our example of $g(x)=\left(1+x^{5}\right)\left(1+x+x^{3}\right)$ with $m=3, \rho=7$, and $\ell=3$.
- Block length $n=$ LeastCommonMulitple $(2 \ell-1, p)$.
- In this case, $n=\operatorname{LCM}(5,7)=35$.
- Original message length $k=n-m-2 \ell+1$.
- $k=27$.
- Would be 29.8 if it were a Hamming code*.
- $(35,27)$ code. Rate gets better with larger blocks.

Not as Good as Reed-Solomon

Section 3

Interleaved Codes

Interleaved Codes

- We have many codes that work well, if errors are randomly distributed in our message
- But errors are more likely to be spatially correlated
- What if we split up the errors, so errors within a burst error are spread out across different words?

Interleaved Codes

- Built off of codes that are better suited for randomly distributed errors (ex: Hamming Codes)
- After encoding the message, but before sending it, we use some bijective function to scramble up the bits (the interleave step)
- We send the message, and some burst error occurs
- After receiving the message, we descramble the bits (the deinterleave step), sending errors to different code words
- We use the underlying code to detect and / or correct errors

Interleaved Codes With a Block Interleaver

- One way to interleave a message
- Organize message as a $M \times N$ matrix: write bits in row major order, read in column major order
- Alternatively, write matrix in row major order, transpose the matrix, read the matrix in row major order

$$
x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} \rightarrow
$$

x_{0}	x_{1}	x_{2}
x_{3}	x_{4}	x_{5}
x_{6}	x_{7}	x_{8}

Block Interleaver Example

$000 \quad 000 \quad 111 \quad 000 \rightarrow$
$\rightarrow 001 \quad 000 \quad 100 \quad 010$

Block Interleaver Example

$$
001000100010+001110000000=000110100010 \rightarrow
$$

0	1	0
0	0	0
0	1	1
1	0	0

$\rightarrow 010 \quad 000 \quad 011 \quad 100$

Block Interleaver Analysis

- Take a burst error of length ℓ
- After interleaving, the distance between consecutive errors becomes M
- We need a burst error of length $M \cdot \ell+1$ to get $\ell+1$ consecutive errors in the output
- Thus, a code that can correct t errors can correct $M \cdot t$ burst errors.

Block Interleaver Analysis

- Block Interleaver takes up $M \cdot N$ space
- We can measure its efficiency by comparing how many errors can occur until it fails and how much space it takes up
- efficiency $=\frac{M \cdot t+1}{M \cdot N} \approx \frac{M \cdot t}{M \cdot N}=\frac{t}{N}$

Block Interleaver Analysis

- One major downside: we need to read almost the entire transmitted message before we can start deinterleaving it and running error detection / correction on it
- Not necessarily as good for data streams
- Possible solution: apply interleaving to blocks of data at a time
- Possible issue with this solution: how do we know when blocks start / end in the data stream?

Interleaved Codes With a Convolution Interleaver

- A different interleaving approach
- Sometimes called a cross interleaver
- Interleave by putting consecutive elements into consequtive queues of varying lengths

$\ldots x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} \ldots \rightarrow$| | x_{6} | | |
| :---: | :---: | :---: | :--- |
| | x_{7} | x_{4} | |
| | x_{8} | x_{5} | x_{2} |

$$
\rightarrow \ldots x_{6} x_{4} x_{2} x_{9} x_{7} x_{5} \ldots
$$

Convolution Interleaver: Another Approach

- Write the message as a matrix and shift columns down by varying amounts.

$$
x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} \rightarrow
$$

x_{0}	x_{1}	x_{2}
x_{3}	x_{4}	x_{5}
x_{6}	x_{7}	x_{8}

Convolution Interleaver: Another Approach

- Write the message as a matrix in row major order and shift columns down by varying amounts.

$$
x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} \rightarrow
$$

x_{0}		
x_{3}	x_{1}	
x_{6}	x_{4}	x_{2}
	x_{7}	x_{5}
		x_{8}

$$
\rightarrow \ldots x_{6} x_{4} x_{2} \ldots
$$

Convolution Interleaver: Deinterleaving

$\ldots x_{6} x_{4} x_{2} x_{9} x_{7} x_{5} \ldots \rightarrow \quad$| | x_{9} | x_{6} | x_{3} | |
| :--- | :--- | :--- | :--- | :--- |
| | x_{7} | x_{4} | | |
| | x_{5} | | | |
| | | | | |$\quad \rightarrow \ldots x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} \ldots$

Convolution Interleaver: Deinterleaving

$$
\ldots x_{6} x_{4} x_{2} \ldots \rightarrow
$$

x_{0}		
x_{3}	x_{1}	
x_{6}	x_{4}	x_{2}
	x_{7}	x_{5}
		x_{8}

x_{0}	x_{1}	x_{2}
x_{3}	x_{4}	x_{5}
x_{6}	x_{7}	x_{8}

$\rightarrow x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}$

Convolution Interleaver Example

 $000 \quad 000 \quad 111 \quad 000 \rightarrow$| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 1 | 1 | 1 |
| 0 | 0 | 0 |

\rightarrow

0	-	-
0	0	-
1	0	0
0	1	0
-	0	1
-	-	0

$\rightarrow 0 _$_00_100010_01__0

Convolution Interleaver Example

$$
\begin{aligned}
0 _-00 _100010 _01 _-0 & +0 _-01 _100100 _00 _-0 \\
& =0 _-01 _000110 _01 _-0
\end{aligned}
$$

0	-	-
0	1	-
0	0	0
1	1	0
-	0	1
-	-	0

Convolution Interleaver Example

\rightarrow

0	1	0
0	0	0
0	1	1
1	0	0

$$
\rightarrow 010 \quad 000 \quad 011 \quad 100
$$

Convolution Interleaver Analysis

- Difference between consecutive errors becomes $N+1$
- We can correct up to $(N+1)(t-1)$ errors
- Takes up $0+1+\ldots+(N-1)=\frac{N(N-1)}{2}$ space
- We no longer have to read nearly the entire message to start decoding

Convolution Interleaver Analysis

- We can measure its efficiency by comparing how many errors can occur until it fails and how much space it takes up
- efficiency $=\frac{(N+1)(t-1)+1}{\frac{N(N-1)}{2}} \approx \frac{N \cdot t}{\frac{N^{2}}{2}}=\frac{2 t}{N}$
- Notice that the efficiency for the convolution interleaver is approximately twice as good as that of the block interleaver (which had efficiency $=\frac{t}{N}$)

Section 4

Unary Codes

Unary Codes

$$
000000 \xrightarrow{\text { error of } 000000} 000000 \rightarrow 000000
$$

Information is the resolution of uncertainty.

- Claude Shannon (1948)

Bibliography

Moon, Todd K. Error Correction Coding: Mathematical Methods and Algorithms. John Wiley \& Sons, Inc., 2005.

