
Burst Codes

Alex Broihier, Porter Shawver



Outline

Cyclic Codes

Fire Codes

Interleaved Codes

Unary Codes



Section 1

Cyclic Codes



Burst Errors

• Burst Description (P,L) where P is the error, L is the starting index

• E = [0, 1, 1, 0, 0, 1] is the error in some message

• (11001, 2) describes E

• More common in the real world (think scratching a CD, the internet
dropping in the middle of a message, etc.)



What are Cyclic Codes

• Invariant under rotation

▶ 011001, 101100, 010110, 001011, 100101, 110010 all the same

• When considering cycles with burst errors, the burst description is no
longer unique

• E = [0, 1, 1, 0, 0, 1] is described by
(11001, 2), (100101, 3), and (1011, 6)

• E
Rotated To−−−−−−−→ [1, 0, 0, 1, 0, 1] is described by (1011, 4)

• E
Rotated To−−−−−−−→ [1, 0, 1, 1, 0, 0] is described by (100101, 4)



Generating Functions for Linear Cyclic Codes

• Coefficient of each term corresponds to a corresponding digit in code

• g(x) = 1x0 + 0x1 + 1x2 + 1x3 + 0x4 corresponds to 10110

• A multiplication by x corresponds to a rotation:

x · g(x) = 1x1 + 0x2 + 1x3 + 1x4 + 0x5

= 1x1 + 0x2 + 1x3 + 1x4 + 0x0

= 0x0 + 1x1 + 0x2 + 1x3 + 1x4

→ 01011



Cyclic Codespace

Let w be the original, un-encoded message.

w
Encode−−−−→ w · g(x) Transmission Error−−−−−−−−−−−−→ w · g(x) + e(x)

Mod g(x)−−−−−−→ e(x).

• e(x) obtained as remainder when dividing by g(x)



Example

• Say we want to encode {00, 10, 01, 11}

• Let’s pick g(x) = 1 + x2 as our generator

00 10 01 11
→ 0 1 x 1 + x

→ 0(1 + x2) 1(1 + x2) x(1 + x2) (1 + x)(1 + x2)

→ 0 1 + x2 x+ x3 1 + x+ x2 + x3

→ 0000 1010 0101 1111

• If I receive 0100, I know an error occurred



Example

1. Codewords: {0000, 1010, 0101, 1111}

2. Generator Polynomial: g(x) = 1 + x2

3. Receive 1110

1110 → 1 + x+ x2 → 1+x+x2

1+x2 = 1 + x
1+x2 → x is the remainder

→ error = 0100 → original message = 1010



Cosets

• The set of all errors that differ by a code word: e1 = e2 + c

• Ex: for the previous example, the error 0100 is in the same coset as
1110, 0001 and 1011, by adding the codewords 1010, 0101, and 1111
respectively.

Lemma
A linear code C is an ℓ-burst-error-correcting code if distinct burst errors
of length ≤ ℓ are in distinct cosets of C.



Cosets Hand-Wavy Intuition



Section 2

Fire Codes



Fire Codes

• Type of burst error correcting code.

• Appeared originally in Philip Fire’s 1959 dissertation, A class of
multiple-error-correcting binary codes for non-independent errors.



Building a Fire Code

• Let p(x) be a prime/irreducible polynomial of degree m over F2.

▶ An irreducible polynomial cannot be factored into products of
non-constant polynomials.

• Let ρ be the smallest integer such that p(x) | (1 + xρ). ρ is called the
period.

• Let ℓ be a positive integer not divisible by ρ with ℓ ≤ m.

• g(x) = (1 + x2ℓ−1)p(x) is the generator polynomial for a Fire code.



Example

• Start with p(x) = 1 + x+ x3. (Note: m = 3.)

• We can find ρ with ρ = 2m − 1, so ρ = 23 − 1 = 7.

• Select ℓ = 3. We have ℓ ≤ m and p ̸ | (2ℓ− 1), so this choice works.

• Thus,

g(x) = (1 + x2ℓ−1)p(x)

= (1 + x5)(1 + x+ x3)

= 1 + x+ x3 + x5 + x6 + x8



Correct codes of length ≤ ℓ

Theorem
Fire codes can correct burst errors of length ℓ.

Proof
General idea: proof by contradiction of the lemma from before that
distinct burst errors must be in distinct cosets.

Lemma
(1 + x2ℓ−1) and p(x) (the factors of g(x)) are relatively prime.



Proof

• Take two distinct burst errors with lengths ℓ1, ℓ2 < ℓ represented by

a(x) = 1 + a1x+ a2x
2 + · · ·+ aℓ1−2 + xℓ1−1

b(x) = 1 + b1x+ b2x
2 + · · ·+ bℓ2−2 + xℓ2−1

• These errors could be anywhere, so we write xia(x) and xjb(x) for
some i, j < n representing start of error (WLOG assume i < j).

• Suppose for contradiction xia(x) and xjb(x) are in the same coset.
(xia(x) = xjb(x) + c for some code word c)

• Then their sum, xia(x) + xjb(x), is a polynomial v(x) in the code.

• Let q, b such that j − i = q(2ℓ− 1) + b.



Proof

• Then

v(x) = xia(x) + xjb(x)

= xia(x) + xjb(x) + 2xb+ib(x)

= xi
(
a(x) + xbb(x)

)
+ xb+ib(x)(1 + xq(2ℓ−1))

• Because v(x) represents code word, it is divisible by g(x).

• Because the factors of g(x) are relatively prime, v(x) must be
divisible by 1 + x2ℓ−1.

• So a(x) + xbb(x) is divisible by 1 + x2ℓ−1 (or is 0). Let d(x) be the
quotient with degree δ.



Proof

δ︷︸︸︷
d(x)

2ℓ−1︷ ︸︸ ︷
(1 + x2ℓ−1) =

ℓ1−1︷︸︸︷
a(x)+

b+ℓ2−1︷ ︸︸ ︷
xbb(x)



Proof

δ︷︸︸︷
d(x)

2ℓ−1︷ ︸︸ ︷
(x2ℓ−1 + 1)︸ ︷︷ ︸
2ℓ−1+δ

=

ℓ1−1︷︸︸︷
a(x)+

b+ℓ2−1︷ ︸︸ ︷
xbb(x)

ℓ1 − 1 < 2ℓ− 1

=⇒ b+ ℓ2 − 1 = 2ℓ− 1 + δ

=⇒ b = 2ℓ− ℓ2 + δ

=⇒ b ≥ ℓ+ δ

⇓
b > ℓ1 − 1 and b > δ



Proof

b > ℓ1 − 1 and b > δ

• Using b > ℓ1 − 1, we know xb appears in the expansion of
a(x) + xbb(x):

1 + a1x+ a2x
2 + · · ·+ aℓ1−2 + xℓ1−1

+ xb(1 + b1x+ b2x
2 + · · ·+ bℓ2−2 + xℓ2−1)

• Then, using b > δ, we know d(x) does not have xb, so a(x) + xbb(x)
is not divisible by d(x).

• Recall this means a(x) + xbb(x) = 0.



Proof

a(x) + xbb(x) = 1 + a1x+ a2x
2 + · · ·+ aℓ1−2 + xℓ1−1

+ xb(1 + b1x+ b2x
2 + · · ·+ bℓ2−2 + xℓ2−1)

= 0

=⇒ b = 0 (remember, we’re in F2)
=⇒ a(x) = b(x)

=⇒ Contradiction!

So, if two errors are distinct, they are in different cosets.



Example and Analysis

• Recall our example of g(x) = (1 + x5)(1 + x+ x3) with m = 3, ρ = 7,
and ℓ = 3.

• Block length n = LeastCommonMulitple(2ℓ− 1, p).

▶ In this case, n = LCM(5, 7) = 35.

• Original message length k = n−m− 2ℓ+ 1.

▶ k = 27.

▶ Would be 29.8 if it were a Hamming code∗.

• (35, 27) code. Rate gets better with larger blocks.



Not as Good as Reed-Solomon



Section 3

Interleaved Codes



Interleaved Codes

• We have many codes that work well, if errors are randomly
distributed in our message

• But errors are more likely to be spatially correlated

• What if we split up the errors, so errors within a burst error are
spread out across different words?



Interleaved Codes

• Built off of codes that are better suited for randomly distributed
errors (ex: Hamming Codes)

• After encoding the message, but before sending it, we use some
bijective function to scramble up the bits (the interleave step)

• We send the message, and some burst error occurs

• After receiving the message, we descramble the bits (the deinterleave
step), sending errors to different code words

• We use the underlying code to detect and / or correct errors



Interleaved Codes With a Block Interleaver

• One way to interleave a message

• Organize message as a M ×N matrix: write bits in row major order,
read in column major order

• Alternatively, write matrix in row major order, transpose the matrix,
read the matrix in row major order

x0x1x2x3x4x5x6x7x8 → x0 x1 x2
x3 x4 x5
x6 x7 x8

→ x0x3x6x1x4x7x2x5x8



Block Interleaver Example

000 000 111 000 →

0 0 0
0 0 0
1 1 1
0 0 0

→ 001 000 100 010



Block Interleaver Example

001000100010 + 001110000000 = 000110100010 →

0 1 0
0 0 0
0 1 1
1 0 0

→ 010 000 011 100



Block Interleaver Analysis

• Take a burst error of length ℓ

• After interleaving, the distance between consecutive errors becomes
M

• We need a burst error of length M · ℓ+ 1 to get ℓ+ 1 consecutive
errors in the output

• Thus, a code that can correct t errors can correct M · t burst errors.



Block Interleaver Analysis

• Block Interleaver takes up M ·N space

• We can measure its efficiency by comparing how many errors can
occur until it fails and how much space it takes up

• efficiency = M ·t+1
M ·N ≈ M ·t

M ·N = t
N



Block Interleaver Analysis

• One major downside: we need to read almost the entire transmitted
message before we can start deinterleaving it and running error
detection / correction on it

• Not necessarily as good for data streams

• Possible solution: apply interleaving to blocks of data at a time

• Possible issue with this solution: how do we know when blocks start
/ end in the data stream?



Interleaved Codes With a Convolution Interleaver

• A different interleaving approach

• Sometimes called a cross interleaver

• Interleave by putting consecutive elements into consequtive queues of
varying lengths

. . . x3x4x5x6x7x8 . . . →
x6
x7 x4
x8 x5 x2

→ . . . x6x4x2x9x7x5 . . .



Convolution Interleaver: Another Approach

• Write the message as a matrix and shift columns down by varying
amounts.

x0x1x2x3x4x5x6x7x8 →
x0 x1 x2
x3 x4 x5
x6 x7 x8



Convolution Interleaver: Another Approach

• Write the message as a matrix in row major order and shift columns
down by varying amounts.

x0x1x2x3x4x5x6x7x8 →

x0
x3 x1
x6 x4 x2

x7 x5
x8

→ . . . x6x4x2 . . .



Convolution Interleaver: Deinterleaving

. . . x6x4x2x9x7x5 . . . → x9 x6 x3
x7 x4
x5

→ . . . x3x4x5x6x7x8 . . .



Convolution Interleaver: Deinterleaving

. . . x6x4x2 . . . →

x0
x3 x1
x6 x4 x2

x7 x5
x8

x0 x1 x2
x3 x4 x5
x6 x7 x8

→ x0x1x2x3x4x5x6x7x8



Convolution Interleaver Example
000 000 111 000 →

0 0 0
0 0 0
1 1 1
0 0 0

→
0 - -
0 0 -
1 0 0
0 1 0
- 0 1
- - 0

→ 0__00_100010_01__0



Convolution Interleaver Example

0__00_100010_01__0 + 0__01_100100_00__0

= 0__01_000110_01__0

→
0 - -
0 1 -
0 0 0
1 1 0
- 0 1
- - 0



Convolution Interleaver Example

→
0 1 0
0 0 0
0 1 1
1 0 0

→ 010 000 011 100



Convolution Interleaver Analysis

• Difference between consecutive errors becomes N + 1

• We can correct up to (N + 1)(t− 1) errors

• Takes up 0 + 1 + . . .+ (N − 1) = N(N−1)
2 space

• We no longer have to read nearly the entire message to start decoding



Convolution Interleaver Analysis

• We can measure its efficiency by comparing how many errors can
occur until it fails and how much space it takes up

• efficiency = (N+1)(t−1)+1
N(N−1)

2

≈ N ·t
N2

2

= 2t
N

• Notice that the efficiency for the convolution interleaver is
approximately twice as good as that of the block interleaver (which
had efficiency = t

N )



Section 4

Unary Codes



Unary Codes

000000
error of 000000−−−−−−−−−→ 000000 → 000000



Information is the resolution of uncertainty.

— Claude Shannon (1948)



Bibliography

Moon, Todd K. Error Correction Coding: Mathematical Methods and
Algorithms. John Wiley & Sons, Inc., 2005.


	Cyclic Codes
	Fire Codes
	Interleaved Codes
	Unary Codes

