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Section 1

Cyclic Codes



Burst Errors

Burst Description (P, L) where P is the error, L is the starting index

E =10,1,1,0,0,1] is the error in some message

(11001, 2) describes E

® More common in the real world (think scratching a CD, the internet
dropping in the middle of a message, etc.)
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What are Cyclic Codes

e [nvariant under rotation

> 011001, 101100, 010110, 001011, 100101, 110010 all the same

® When considering cycles with burst errors, the burst description is no
longer unique

e £=10,1,1,0,0,1] is described by
(11001, 2), (100101, 3), and (1011, 6)

Rotated To
_—

e F [1,0,0,1,0,1] is described by (1011, 4)

Rotated To
_—

o E [1,0,1,1,0,0] is described by (100101, 4)



Generating Functions for Linear Cyclic Codes

e Coefficient of each term corresponds to a corresponding digit in code
* g(z) = 12 + 02! + 122 + 123 + 02* corresponds to 10110
® A multiplication by x corresponds to a rotation:
z-g(x) = 1o 4+ 02% + 1% + 1% + 02°
= 1zt + 02% 4 123 + 12 + 02"
=027 + 1z' + 02% + 12° + 12*
— 01011



Cyclic Codespace

Let w be the original, un-encoded message.

Encode Transmission Error
-9(x)

w—— w w-g(z) + e(x) M)e(m).

® e(x) obtained as remainder when dividing by g(z)



Example

® Say we want to encode {00, 10,01, 11}

® Let’s pick g(x) = 1 + 22 as our generator

00 10 01 11
-0 1 T 1+
— 0(1 + 2?) 1(1 +2?) z(1 + 2?) (14 z)(1 + 2?)
—0 14 22 z+ 23 1+z+2%+23
— 0000 1010 0101 1111

e [f I receive 0100, I know an error occurred



Example

1. Codewords: {0000,1010,0101,1111}
2. Generator Polynomial: g(z) =1+ 22
3. Receive 1110

1110 5 1+ 2 + a2 — 1?1;52 =1+ H% — x is the remainder

— error = 0100 — original message = 1010
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Cosets

® The set of all errors that differ by a code word: e; = es + ¢

e [Jr: for the previous example, the error 0100 is in the same coset as
1110, 0001 and 1011, by adding the codewords 1010, 0101, and 1111
respectively.

Lemma
A linear code C is an ¢-burst-error-correcting code if distinct burst errors
of length < ¢ are in distinct cosets of C.



Cosets Hand-Wavy Intuition
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Fire Codes



Fire Codes

® Type of burst error correcting code.

e Appeared originally in Philip Fire’s 1959 dissertation, A class of
multiple-error-correcting binary codes for non-independent errors.



Building a Fire Code

Let p(x) be a prime/irreducible polynomial of degree m over Fs.

» An irreducible polynomial cannot be factored into products of
non-constant polynomials.

Let p be the smallest integer such that p(x) | (1 + z”). p is called the
period.

Let ¢ be a positive integer not divisible by p with £ < m.

g(x) = (1 + 22~1)p(x) is the generator polynomial for a Fire code.
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Example

Start with p(z) = 1+ z + 23. (Note: m = 3.)

We can find p with p=2" — 1,50 p=23-1="7.

Select £ = 3. We have £ < m and p f (2¢ — 1), so this choice works.
Thus,

g(z) = (142 ")p(x)
= (1+2501+z+23)
= 1+aj+$3+m5+az6+m8



Correct codes of length </

Theorem
Fire codes can correct burst errors of length £.

Proof

General idea: proof by contradiction of the lemma from before that
distinct burst errors must be in distinct cosets.

Lemma

(1+ 22~1) and p(z) (the factors of g(z)) are relatively prime.



Proof

® Take two distinct burst errors with lengths ¢, o < £ represented by

a(z) =14+ a1z +a2x2 o ap o 4 g1

b(x) = 1+ b1 + box® + -+ bpy o + 227

® These errors could be anywhere, so we write z’a(x) and 27b(x) for
some i, j < n representing start of error (WLOG assume i < j).

* Suppose for contradiction x'a(x) and 27b(x) are in the same coset.
(z'a(z) = 27b(x) + ¢ for some code word c)

® Then their sum, z'a(x) + 27b(x), is a polynomial v(x) in the code.

® Let ¢q,b such that j —i=¢q(20 —1) +b.
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v(z) = 2la(z) + 27b(z)
= zla(z) + 27b(z) + 222 b(x)
=2 (a(x) + 2°b(2)) + 2"Tb(z)(1 + 293D

® Because v(z) represents code word, it is divisible by g(x).

¢ Because the factors of g(z) are relatively prime, v(z) must be
divisible by 1 + 221,

* So a(x) + 2b(z) is divisible by 1 4+ 2%~ (or is 0). Let d(z) be the
quotient with degree 6.



Proof



Proof

Fy 20—1 l1—1  btle—1
AN AN
d(z) (71 4+ 1) = a(z) + 2bb(z)

20—1+6
h—1<20-1
= b+l —1=20—-1+9

4
b>/¢1—1landb>4



Proof

b>/i—1and b>§d

e Using b > ¢1 — 1, we know x® appears in the expansion of
a(x) + 2°b(x):

1 + all’—f— a2x2 + .. +a’€1—2 +CC€1_1

+ xb(l +bix + ngQ 4+ bg2_2 + :L,Zz—l)

® Then, using b > &, we know d(z) does not have z°, so a(z) + z°b(x)
is not divisible by d(z).

® Recall this means a(x) + 2°b(z) = 0.



Proof

a(z) +2b(z) = 1+ a1z + agx® + -+ agy g + 271

+ 221+ byx + box? 4 - 4 by, g + 2271
=0
= b=0 (remember, we're in Fy)
= a(z) = b(x)
= Contradiction!

So, if two errors are distinct, they are in different cosets.



Example and Analysis

Recall our example of g(z) = (1 +2°)(1+ 2+ 23) withm =3, p=7,
and ¢ = 3.

Block length n = LeastCommonMulitple(2¢ — 1, p).
> In this case, n = LCM(5,7) = 35.

Original message length k =n —m — 20 + 1.
> k=27

» Would be 29.8 if it were a Hamming code*.

(35,27) code. Rate gets better with larger blocks.



Not as Good as Reed-Solomon

Output BER Performance Comparison
10 ! ; T | T

T T T
—+#— Uncoded case

Fire code(2112, 2080)
—*— RS(264,260,t=2) m=10
—#— R5(528,520, t=4), m=10
==& == §5(270,260, t=5), m=10
—-&-- R5(792,780, t=6). m=10

Bit Error Rate

18 . i
11 12 13 14 15 16 17 18 19 20
Eb/No (dB)
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Interleaved Codes



Interleaved Codes

® We have many codes that work well, if errors are randomly
distributed in our message

® But errors are more likely to be spatially correlated

® What if we split up the errors, so errors within a burst error are
spread out across different words?



Interleaved Codes

Built off of codes that are better suited for randomly distributed
errors (ex: Hamming Codes)

After encoding the message, but before sending it, we use some
bijective function to scramble up the bits (the interleave step)

We send the message, and some burst error occurs

After receiving the message, we descramble the bits (the deinterleave
step), sending errors to different code words

We use the underlying code to detect and / or correct errors
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Interleaved Codes With a Block Interleaver

® One way to interleave a message

® Organize message as a M x N matrix: write bits in row major order,

read in column major order

® Alternatively, write matrix in row major order, transpose the matrix,
read the matrix in row major order

TOL1X2X3T4T5LX6L7L] —

ZTo | L1 | T2
X3 | T4 | T
Te | T7 | T8

— TQX3ITEL1T4L7T2L5TY



Block Interleaver Example

000 000 111 000 —

[N el Nen)

OO

— 001 000 010




Block Interleaver Example

001000100010 + 001110000000 = 000110100010 —

e k=l k=] R =]
Ol | O
OO O

— 010 000 011 100



Block Interleaver Analysis

Take a burst error of length ¢

After interleaving, the distance between consecutive errors becomes
M

We need a burst error of length M - £+ 1 to get £ + 1 consecutive
errors in the output

Thus, a code that can correct t errors can correct M -t burst errors.
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Block Interleaver Analysis

® Block Interleaver takes up M - N space

® We can measure its efficiency by comparing how many errors can
occur until it fails and how much space it takes up

o efficiency = Mt ~ ML — L




Block Interleaver Analysis

® One major downside: we need to read almost the entire transmitted
message before we can start deinterleaving it and running error
detection / correction on it

® Not necessarily as good for data streams
® Possible solution: apply interleaving to blocks of data at a time

e Possible issue with this solution: how do we know when blocks start
/ end in the data stream?



Interleaved Codes With a Convolution Interleaver

e A different interleaving approach
® Sometimes called a cross interleaver

¢ Interleave by putting consecutive elements into consequtive queues of
varying lengths

L6
.. T3T4T5TETT7LY . . —> T7 | T4 — ... TeTLX2TYT 7S . . .

T8 | Ty | T
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Convolution Interleaver: Another Approach

® Write the message as a matrix and shift

columns down by varying
amounts.

To | L1 | T2

TOL1T2T3T4T5LELTLY — T3 | T4 | T5

Te | T7 | T8




Convolution Interleaver: Another Approach

® Write the message as a matrix in row major order and shift columns
down by varying amounts.

0
3 | T1
TOT1X2L3T4X5LELTLY — Tg | T4 | T2
T7 | T5
g

— ... TET4TY . . .



Convolution Interleaver

L LETAT2TYT TS . —

: Deinterleaving
To | T6 | *3 — ... T3T4T5T6T7LS - . .
T7 | T4

L5




Convolution Interleaver: Deinterleaving

Zo
I3 | L1
. TeT4T ... — Tg | T4 | T2
Z7 | Ts
Ts
To | #1 | *2 — TOL1T2X3L4XL5TELT7LY

T3 | T4 | Ts

Te | L7 | T8




Convolution Interleaver Example
000 000 111 000 —

[« N Neoll Nan)
[« Nenll Haw)
(=N Neoll Nan)

(=N el Nen)

(e Bl el Nanl B ]

el Rewl Nawl B}

~0__00_100010_01 0



Convolution Interleaver Example

0__00_100010_01__0+0__0l 100100_00__0

=0__ 0l 000110_01__0

[l ==l N ew) Naw)

O = || =

(el il Nev) Nen) BN




Convolution Interleaver Example

il =) Newll Han)
[« N Nevll Nan)

Ol | O =

— 010 000 011 100



Convolution Interleaver Analysis

Difference between consecutive errors becomes N + 1

¢ We can correct up to (N + 1)(¢t — 1) errors

TakesupO-I—l-l—...-l—(N—l):wspace

We no longer have to read nearly the entire message to start decoding



Convolution Interleaver Analysis

® We can measure its efficiency by comparing how many errors can
occur until it fails and how much space it takes up

(NAD(E=D+1 Nt _ 2t

e efficiency = “—xr—— ® @ = ¥
2 2
® Notice that the efficiency for the convolution interleaver is

approximately twice as good as that of the block interleaver (which
had efficiency = %)
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Unary Codes



Unary Codes

error of 000000
_—

000000 000000 — 000000



Information is the resolution of uncertainty.

— Claude Shannon (1948)
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