[Woo21]
What are Codes?

Anakin

Updates!

Weekly updates:

- I will be presenting more of my REU work this Friday!
- Everitt Hall Room 2233 at 4PM!
- THERE IS FREE PIZZA!!

Section 1

Motivation

The Basic Problem

Let $x[1 \ldots k]$ be some (bit)string

$$
x[1 \ldots k] \xrightarrow{\text { ENCode }(x)} c[1 \ldots n] \xrightarrow{\text { CORRUPTION }} \tilde{c}[1 \ldots n]
$$

Question: Can we design Encode such that we can recover x from \tilde{c} ?

In Space No One Can Hear You Scream Bitflip

Here's one of the most entertaining reasons why we care about this problem

- A 2003 national election in Belgium used electronic voting
- A little known candidate got more votes than were people in the town that reported an error
- A recount was done and the candidates votes decreased by $4096=2^{12}$
- An investigation later determined that the a bit in the magnetic cards being used got flipped due to a cosmic ray (after ruling out other causes)

Section 2

Making This Concrete

ABCs of Codes

Definition (Alphabets, Block Lengths, Codes)
A code C of block length n over a (finite) alphabet Σ is a set $C \subseteq \Sigma^{n}$. An element $c \in C$ is a code word (big surprise here).

An Example

Consider the following encoding over $\Sigma=\{0,1\}$ (bitstrings)

$$
\begin{aligned}
& \text { ENCODE }:\{0,1\}^{3} \rightarrow\{0,1\}^{4} \\
&\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}, x_{3}, x_{1}+x_{2}+x_{3}(\bmod 2)\right) \\
& C:= \operatorname{im}(\text { ENCODE })=\left\{\begin{array}{lll}
0000, & 0011, & 0101, \\
1001, & 1010, & 1100, \\
1111
\end{array}\right\}
\end{aligned}
$$

Claim: Code C can correct one erasure. If we lose one bit and know where it was, we can recover it.

If $\tilde{c}=0 ? 01$, what is $c ? c=0101$
If $\tilde{c}=11 ? 1$, what is $c ? c=1111$
If $\tilde{c}=0 ? ? 1$, what is $c ? c=0101$ or $c=0011$

An Example

Consider the following encoding over $\Sigma=\{0,1\}$ (bitstrings)

$$
\begin{gathered}
\text { ENCODE: }\{0,1\}^{3} \rightarrow\{0,1\}^{4} \\
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}, x_{3}, x_{1}+x_{2}+x_{3}(\bmod 2)\right) \\
C:=\operatorname{im}(\text { ENCODE })=\left\{\begin{array}{lll}
(0,0,0,0), & (0,0,1,1), & (0,1,0,1), \\
(1,0,0,1), & (1,0,1,0), & (1,1,0,0), \\
(1,1,1,1)
\end{array}\right\}
\end{gathered}
$$

Claim: Code C can detect one error. We can tell detect with certainty if $\tilde{c} \in C$ or $\tilde{c} \notin C$ if at most one bit was flipped

If $\tilde{c}=0001$, was there an error? YES! what is c ? $c \in\{0000,1001,0101,0011\}$

If $\tilde{c}=0000$, was there an error? Who knows? c could be 0000 or 0110

Metrics and Geometry

Consider the following encoding over $\Sigma=\{0,1\}$ and $C:=\mathrm{im}($ Encode $)$
ENCODE: $\{0,1\}^{4} \rightarrow\{0,1\}^{7}$

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto(x_{1}, x_{2}, x_{3}, x_{4}, \overbrace{x_{2}+x_{3}+x_{4}, x_{1}+x_{3}+x_{4}, x_{1}+x_{2}+x_{4}}^{\bmod 2})
$$

Claim: This code can correct one error! So we can tell if $\tilde{c} \in C$ or if $\tilde{c} \notin C$ and there is one $\overline{\text { flipped }}$ bit, we can correct it.

We will show this geometrically
$\bmod 2$
$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto(x_{1}, x_{2}, x_{3}, x_{4}, \overbrace{x_{2}+x_{3}+x_{4}, x_{1}+x_{3}+x_{4}, x_{1}+x_{2}+x_{4}}^{\bmod 2})$
Question: If $\tilde{c}=0111010$, what is c ?

$\bmod 2$
$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto(x_{1}, x_{2}, x_{3}, x_{4}, \overbrace{x_{2}+x_{3}+x_{4}, x_{1}+x_{3}+x_{4}, x_{1}+x_{2}+x_{4}}^{\bmod 2})$
Question: If $\tilde{c}=0111010$, what is c ?

$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto(x_{1}, x_{2}, x_{3}, x_{4}, \overbrace{x_{2}+x_{3}+x_{4}, x_{1}+x_{3}+x_{4}, x_{1}+x_{2}+x_{4}}^{\bmod 2})$
Question: If $\tilde{c}=0111010$, what is c ?

$\bmod 2$
$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto(x_{1}, x_{2}, x_{3}, x_{4}, \overbrace{x_{2}+x_{3}+x_{4}, x_{1}+x_{3}+x_{4}, x_{1}+x_{2}+x_{4}}^{\text {mod } 2})$
Question: If $\tilde{c}=0111010$, what is c ?

$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto(x_{1}, x_{2}, x_{3}, x_{4}, \overbrace{x_{2}+x_{3}+x_{4}, x_{1}+x_{3}+x_{4}, x_{1}+x_{2}+x_{4}}^{\bmod 2})$
Question: If $\tilde{c}=0111010$, what is c ?
Answer: $c=0101010$

Formalizing What We Just Saw

The code we just saw is an example of the Hamming Code.

Definition ((Relative) Hamming Distance)

The Hamming Distance $\Delta(x, y)$ between $x, y \in \Sigma^{n}$ is the number of positions where x and y have different characters.
Exercise: If you know what a metric is, this is a metric. $\forall x, y, z \in \Sigma^{n}$:

- $\Delta(x, x)=0, \Delta(x, y)=\Delta(y, x)$, If $x \neq y, \Delta(x, y)>0$
- $\Delta(x, z) \leq \Delta(x, y)+\Delta(y, z)$ (Triangle Inequality)

The Relative Hamming Distance $\delta(x, y)$ is $\frac{\Delta(x, y)}{n}$.

Definition (Minimum Distance)

The Minimum Distance of a code C is $\min _{x \neq y \in C} \Delta(x, y)$

Robustness of a Code

Theorem

A code with minimum distance d can

1. Correct $\leq d-1$ erasures
2. Detect $\leq d-1$ errors
3. Correct $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

Examples: (Go check these!)

- The first code we saw Encode: $\Sigma^{3} \rightarrow \Sigma^{4}$ has distance 2
- The second code we saw Encode : $\Sigma^{4} \rightarrow \Sigma^{7}$ has distance 3

Proof: Pretty Pictures

Theorem

A code with minimum distance d can

1. Correct $\leq d-1$ erasures
2. Detect $\leq d-1$ errors
3. Correct $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

A code with minimum distance d can

1. Correct $\leq d-1$ erasures
2. Detect $\leq d-1$ errors
3. Correct $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors
return $c \in C$ minimizing $\Delta(c, \tilde{c})$

Theorem

A code with minimum distance d can

1. Correct $\leq d-1$ erasures
2. Detect $\leq d-1$ errors
3. Correct $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

> | Correct (\tilde{c}) : |
| :--- |
| \quad return $c \in C$ minimizing $\Delta(c, \tilde{c})$ |

Theorem

A code with minimum distance d can

1. Correct $\leq d-1$ erasures
2. Detect $\leq d-1$ errors
3. Correct $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

> | Correct (\tilde{c}) : |
| :--- |
| \quad return $c \in C$ minimizing $\Delta(c, \tilde{c})$ |

A code with minimum distance d can

1. Correct $\leq d-1$ erasures
2. Detect $\leq d-1$ errors
3. Correct $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors

Detect (\tilde{c}) :
if $\tilde{c} \in C$, return "no error" else, return "error"

What is an erasure?

$c=$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	$x_{8} \cdots$
$\tilde{c}=$	x_{1}	x_{2}	-	-	x_{5}	-	x_{7}	$x_{8} \cdots$

Question: If there are $\leq d-1$ erasures, what is the max value of $\Delta(c, \tilde{c})$?
Answer: $d-1$!

Sadly, Pictures are Misleading

You may ask "If \tilde{c} is of distance $\leq d-1$ to c and c^{\prime} can be as close as c^{\prime} then could \tilde{c} be closer to c^{\prime} ?"

- Suppose that \tilde{c} is a corruption of c and has $\leq d-1$ erasures. Suppose c^{\prime} is a different code word to c but for contradiction, $\Delta\left(\tilde{c}, c^{\prime}\right)<\Delta(\tilde{c}, c)$ so $\operatorname{Correct}(\tilde{c})$ incorrectly corrects \tilde{c} to c^{\prime}
- That means there are two different ways to fill the $\leq d-1$ erasures where one filling gives c and the other gives c^{\prime}
- Since we are only dealing with erasures in $\leq d-1$, we know what the other characters are, and the other $n-d+1$ positions of c^{\prime} and c must match.
- This implies $\Delta\left(c, c^{\prime}\right) \leq d-1<d$ which is a contradiction to our minimum distance d, since c and c^{\prime} are distinct strings. So Correct (\tilde{c}) should correctly return c

Efficiency and Overhead

Definition (Message Length)

The message length / dimension of a code C over an alphabet Σ is
$k:=\log _{|\Sigma|}|C|$
Remember we were talking at the beginning of encoding messages of length k into a code C of messages of length n ? This is the same k ?

- Our messages live in Σ^{k} and get mapped to a code in C
- We want every code word in C to correspond to exactly one message and every message to map to exactly one code word
- Want $|C|=\left|\Sigma^{k}\right|=\left|\Sigma^{k}\right|$
- Rearranging yields $k=\log _{|\Sigma|}|C|$

Efficiency and Overhead

Definition (Rate)

The rate of a code $C \subseteq \Sigma^{n}$ is $R=\frac{\text { message length } k}{\text { block length } n}=\frac{\log _{|\Sigma|}|C|}{n}$

- $R \in[0,1]$
- This is sort of the measure of the efficiency of the code
- R close to 1 means message does not grow that much after encoding
- R close to 0 means messages grows quite alot

Trade-offs

Consider an encoding $x \mapsto c$ which perhaps gets corrupted into \tilde{c}

- We want to handle when something bad happens to c
- We want to recover information about x from c / \tilde{c}

Trade-offs

Consider an encoding $x \mapsto c$ which perhaps gets corrupted into \tilde{c}

- We want distance d
- We want to minimize overhead

Trade-offs

Consider an encoding $x \mapsto c$ which perhaps gets corrupted into \tilde{c}

- We want distance d
- We want rate as close to 1 as possible

Motivating Question: What is the trade-off between distance and rate?

Questions?

Information is the resolution of uncertainty.

- CLAUDE E SHANNON (1948)

Bibliography

戋 Mary Wootters.
Lecture 1 video 2: Definitions and examples, 2021.

