[Woo21]
What are Codes?

Anakin

Updates!

Weekly updates:
e | will be presenting more of my REU work this Friday!
e Everitt Hall Room 2233 at 4PM!
e THERE IS FREE PIZZA!!

Section 1

Motivation

The Basic Problem

Let z[1...k] be some (bit)string

ENCODE(z)

z[l... k] cll...n

] CORRUPTION_ ~
— 1

¢ll...n]

Question: Can we design ENCODE such that we can recover = from ¢?

2

In Space No One Can Hear You Seream Bitflip

Here’s one of the most entertaining reasons why we care about this
problem

e A 2003 national election in Belgium used electronic voting

e A little known candidate got more votes than were people in the
town that reported an error

® A recount was done and the candidates votes decreased by 4096 = 2'2

® An investigation later determined that the a bit in the magnetic
cards being used got flipped due to a cosmic ray (after ruling out
other causes)

Section 2

Making This Concrete

ABCs of Codes

Definition (Alphabets, Block Lengths, Codes)

A code C of block length n over a (finite) alphabet ¥ is a set C C X
An element ¢ € C is a code word (big surprise here).

An Example
Consider the following encoding over ¥ = { 0,1} (bitstrings)

ENCODE: {0,1}® — {0,1}*
(x1,x9,23) = (21, T2, 23,21 + 2 + x3 (mod 2))

0000, 0011, 0101, 0110}

C = 1m(ENCODE):{1001, 1010, 1100, 1111

Claim: Code C can correct one erasure. If we lose one bit and know
where it was, we can recover it.

If ¢ = 0701, what is ¢? ¢ = 0101
If ¢=1171, what is ¢? ¢ = 1111
If ¢ =0771, what is ¢? ¢ = 0101 or ¢ = 0011

An Example

Consider the following encoding over ¥ = { 0,1} (bitstrings)

ENCODE: {0,1}® — {0,1}*

(1‘1,1'2,1‘3) = (l’l,l‘g,.ﬁlﬁ'g,wl + 22 + 23 (mOd 2))
(0,0,0,0), (0,0,1,1), (0,1,0,1), (0,1,1,0),
(1,0,0,1), (1,0,1,0), (1,1,0,0), (1,1,1,1)

Claim: Code C can detect one error. We can tell detect with certainty if
¢ € Cor ¢ ¢ C if at most one bit was flipped

C = im(ENCODE) = {

If ¢ = 0001, was there an error? YES! what is ¢?
¢ € {0000, 1001,0101,0011 }

If ¢ = 0000, was there an error? Who knows? ¢ could be 0000 or 0110 E

Metrics and Geometry

Consider the following encoding over ¥ = { 0,1} and C := im(ENCODE)

ENCODE: {0,1}* — {0,1}"
mod 2

(x1, 22, 3, 24) — (T1, T2, 3, T4, To + T3 + T4, 1 + T3 + T4, 21 + T2 + T4)

Claim: This code can correct one error! So we can tell if ¢ € C or if
¢ ¢ C and there is one flipped bit, we can correct it.

We will show this geometrically

mod 2

(21,22, 3, 24) — (21,2, X3, T4, To + T3 + T4, T1 + T3 + T4, T1 + T2 + X4)

Question: If ¢ = 0111010, what is ¢?

-
A7)
_

mod 2

(21,22, 3, 24) — (21,2, X3, T4, To + T3 + T4, T1 + T3 + T4, T1 + T2 + X4)

Question: If ¢ = 0111010, what is ¢?

B
A7)
o

mod 2

(21,22, 3, 24) — (21,2, X3, T4, To + T3 + T4, T1 + T3 + T4, T1 + T2 + X4)

Question: If ¢ = 0111010, what is ¢?

B
ah
N

mod 2

(21,22, 3, 24) — (21,2, X3, T4, To + T3 + T4, T1 + T3 + T4, T1 + T2 + X4)

Question: If ¢ = 0111010, what is ¢?

o
457
&

mod 2

(21,22, 3, 24) — (21,2, X3, T4, To + T3 + T4, T1 + T3 + T4, T1 + T2 + X4)

Question: If ¢ = 0111010, what is ¢? Answer: ¢ = 0101010

B
(o5
o

Formalizing What We Just Saw

The code we just saw is an example of the Hamming Code.
Definition ((Relative) Hamming Distance)

The Hamming Distance A(z,y) between z,y € 3™ is the number of
positions where x and y have different characters.
Exercise: If you know what a metric is, this is a metric. Va,y, z € 3™
° A(z,x) =0, A(z,y) = Ay, z), f x #y, A(x,y) >0
* Az, z) < A(z,y) + Ay, z) (Triangle Inequality)
The Relative Hamming Distance §(x,y) is A(x’y)

Definition (Minimum Distance)

The Minimum Distance of a code C'is min_A(z,y)
z#yeC

Robustness of a Code

Theorem
A code with minimum distance d can
1. Correct < d — 1 erasures
2. Detect < d — 1 errors
3. Correct L%J errors
Examples: (Go check these!)
e The first code we saw ENCODE: ¥ — 3% has distance 2

¢ The second code we saw ENCODE: Y% — ¥7 has distance 3

Proof: Pretty Pictures

Theorem
A code with minimum distance d can

1. Correct < d — 1 erasures
2. Detect < d — 1 errors
3. Correct L%J errors

A(C/ f-/)>/ ﬂL ro

/

Theorem

A code with minimum distance d can
1. Correct < d — 1 erasures
2. Detect < d — 1 errors
Correct L%J errors

CORRECT(?) :
return ¢ € C' minimizing A(c, ¢)

Theorem
A code with minimum distance d can
2n Alx,) éLd_iJj Correct < d — 1 erasures
{ x€ ’ 2 2. Detect < d — 1 errors
3. Correct L%J errors

CORRECT(?) :
return ¢ € C' minimizing A(c, ¢)

Theorem

A code with minimum distance d can
1. Correct < d — 1 erasures
2. Detect < d — 1 errors
Correct L%J errors

CORRECT(?) :
return ¢ € C' minimizing A(c, ¢)

Theorem

A code with minimum distance d can
1. Correct < d — 1 erasures
Detect < d — 1 errors
3. Correct L%J errors

DETECT(C) :
if ¢ € C, return “no error”
else, return “error”

Theorem

A code with minimum distance d can
1. Correct < d — 1 erasures

Detect < d — 1 errors

3. Correct L%l errors

DETECT(C) :
if ¢ € C, return “no error”
else, return “error”

What is an erasure?

)
Il

x1 x2 €3 X4 T5 Te €T €Tg .-

o
Il

I T2 _ _ x5 T7 T8

Question: If there are < d — 1 erasures, what is the max value of A(c,¢)?

Answer: d — 1!

Theorem

A code with minimum distance d can
Correct < d — 1 erasures

2. Detect < d — 1 errors

3. Correct L%J errors

CORRECT(?) :
return ¢ € C' minimizing A(c, ¢)

Sadly, Pictures are Misleading

You may ask “If ¢ is of distance < d — 1 to ¢ and ¢’ can be as close as ¢
then could ¢ be closer to ¢/?”

® Suppose that ¢ is a corruption of ¢ and has < d — 1 erasures.
Suppose ¢ is a different code word to ¢ but for contradiction,
A(é,d) < A(¢, c¢) so CORRECT(¢) incorrectly corrects ¢ to ¢

¢ That means there are two different ways to fill the < d — 1 erasures
where one filling gives ¢ and the other gives ¢/

® Since we are only dealing with erasures in < d — 1, we know what the
other characters are, and the other n — d + 1 positions of ¢’ and ¢
must match.

e This implies A(c,¢’) <d —1 < d which is a contradiction to our
minimum distance d, since ¢ and ¢’ are distinct strings. So
CORRECT(¢) should correctly return ¢

2

Efficiency and Overhead

Definition (Message Length)
The message length / dimension of a code C' over an alphabet X is

k = logy |C]

Remember we were talking at the beginning of encoding messages of
length £ into a code C' of messages of length n? This is the same k7

* Our messages live in ¥ and get mapped to a code in C

® We want every code word in C' to correspond to exactly one message
and every message to map to exactly one code word

> Want |C| = |2F| = |TF|

* Rearranging yields k = logy, |C]

Efficiency and Overhead

Definition (Rate)
. n __ message length & __ 10g|2\ |C]
The rate of a code C C X" is R = block length 7 — -

* Rel0,1]
e This is sort of the measure of the efficiency of the code
® R close to 1 means message does not grow that much after encoding

® R close to 0 means messages grows quite alot

2

Trade-offs

Consider an encoding x — ¢ which perhaps gets corrupted into é
® We want to handle when something bad happens to ¢

¢ We want to recover information about x from c/é

Trade-offs

Consider an encoding x — ¢ which perhaps gets corrupted into ¢
® We want distance d

® We want to minimize overhead

Trade-offs

Consider an encoding x — ¢ which perhaps gets corrupted into é
® We want distance d
® We want rate as close to 1 as possible

Motivating Question: What is the trade-off between distance and rate?

2

Questions?

Information is the resolution of uncertainty.

— CLAUDE E SHANNON (1948)

Bibliography

B Mary Wootters.

Lecture 1 video 2: Definitions and examples, 2021.

	Motivation
	Making This Concrete

