Hamming Codes

Sam Ruggerio

Outline

Review

Hamming Codes

Hamming Bound

Section 1

Review

Error Correction and Detection

® Sending messages between parties might be subject to noise and
erTors.

* How do we:
» Detect Errors?
» Correct Errors?

® The goal is to send a message that minimizes the necessary
redundancy to achieve both goals.

Error Correction and Detection

Easy solution: send k bits for every bit. Use majority voting to
determine true bit.

For example, the message 1011:
> I send: 11111000001111111111 (i.e. k= 5)
» You receive 11011001100111111111

» You determine the correct message by voting 1011

len (original message)
len(code word)

Recall the rate of a code is

Good robustness, but our rate is 20% (4 extra bits for every 1 bit of
information).

Section 2

Hamming Codes

Better Codes

e Can we do better?

® (Claim: For 11 bits, we can correct 1 error, and detect 2 errors, using
only 5 bits, to make “nice” 16 bit blocks

> 11/16 = 68.75% rate!

Block Messages

® Consider a 16-bit block

(=) Nen)l Hen) Nean)
[e=) Nen)l Hen) Nean)
[e=) Nen)l Nen) Neaw)
(=) New)l Nen) Nean)

Block Messages

0

—| =] O

0

0

Il E=] K ==] Nen]

® Consider a 16-bit block
® We want to fill it with
the message 01101001011

2

Block Messages

® Consider a 16-bit block

® We want to fill it with
the message 01101001011

® We'll use the remaining 5
bits to mark parity of
certain regions of the
block.

0
0

Ol == O
el Bl el Nen)
[l =) N ew) Naw)

Hamming Codes

® We use the parity bit to
keep the marked region
even parity (ignoring
parity bits themselves).

ol K==) K en) New]
(i N
[=l K}
ool o

Hamming Codes

® We use the parity bit to
keep the marked region
even parity (ignoring
parity bits themselves).

—= ool O
Ol | =] =
—| O] =
= ololo

Hamming Codes

® We use the parity bit to
keep the marked region
even parity (ignoring
parity bits themselves).

= Ol O
O~ =
| Ol = =
= oo o

Hamming Codes

® We use the parity bit to
keep the marked region
even parity (ignoring
parity bits themselves).

= O~ O
Ol ==
| O ==
=ololo

Hamming Codes

® What about the bit in
the zero position?

o We'll set it to keep the
parity of the entire table.

® This allows us to detect a
second error, should one
exist.

ol O
O = = =
| O ==
= oo O

Hamming Codes

® We can detect the error by checking each parity bit, and fix it!

— Ol = O

Ol | =] =

Questions?

Making More Codes

® What we described was a (15,11) Extended Hamming Code. (11 bits
of message, 4 bit EC parity, 1 bit detection)

® You can easily make any (2" —1,2" — (n + 1)) Hamming Code the
same way.

> Place each parity bit in the row/column corresponding to powers of 2

e In a 2" block, we can efficiently detect 2 errors, and correct 1 error.

In Practice

® You can implement hamming code processing in hardware, or in
software

® When sending info, errors tend to happen in bursts.

¢ Interleave blocks to spread out the errors that could happen.

Section 3

Hamming Bound

Hamming Bound

Exactly how efficient can we get with error correcting codes?

We have a lower bound called the Hamming Bound

It gives us the efficiency of how well any error correcting code can
utilize the space within the entire code word.

Codes that achieve this bound are called Perfect Codes

Hamming Bound

Let ¥ ={0,1}. Let Ax(n,d) be the maximum possible size of a block
code C of length n, with minimum hamming distance d between elements
of the block code.

Then,
"
A <
5 0) < Ty
> (WUE=1F

(Recall that hamming distance is the number of flips you need to reach
another string)

Hamming Bound

* We're effectively that over all strings of length n (|X|"),
e If we can make at most t = |(d — 1)/2] errors,

® Then our code C covers the sum over all possible errors up to k < ¢,
choosing k bits to flip to some other bit.

Hamming Bound

Let ¥ ={0,1}. Let Ax(n,d) be the maximum possible size of a block
code C of length n, with minimum hamming distance d between elements
of the block code.

Then,

(Recall that hamming distance is the number of flips you need to reach
another string)

What does Ay (n,d) mean?

® We have a g-ary language (¢ = |X|), of which we consider some string
of length n

® How many strings can we make from at most d changes?

Computing Ayx(n,d) for Hamming Codes

® Our basic (15,11) Hamming code (no 0 bit), requires three flips to go
from one valid code to another

® While we can detect errors of 2 flips or less, once we go above 2,
distinguishing between one valid message to another is impossible.

® This means that the number of strings we can represent with our
(15,11) Hamming code, with a minimum hamming distance of 3 is
21 = 2048

Computing Ayx(n,d) for Hamming Codes

® So let’s compute the Hamming bound for Ay (15, 3)
215 215

— = — = 2048

Yh-o (x)2-1F 16

¢ So our (15,11) Hamming code matches our hamming bound, thus it
is considered a Perfect Code

Practical, not Perfect

® Qur extended Hamming code includes that 0 bit to detect one more
error.

® This means that in a 16 bit code word, we have a minimum hamming
distance of 4

* Ax(16,4) < 3855.06, but we still can only represent 2048 messages.

e Even though its not perfect, this is the mechanism still used in error
correction within RAM on your computers. Nice powers of 2 are easy
to send around.

The purpose of computing is insight, not numbers.

— Richard Hamming, PhD UIUC (1960s)

	Review
	Hamming Codes
	Hamming Bound

