
Hamming Codes

Sam Ruggerio

Outline

Review

Hamming Codes

Hamming Bound

Section 1

Review

Error Correction and Detection

• Sending messages between parties might be subject to noise and
errors.

• How do we:

▶ Detect Errors?

▶ Correct Errors?

• The goal is to send a message that minimizes the necessary
redundancy to achieve both goals.

Error Correction and Detection

• Easy solution: send k bits for every bit. Use majority voting to
determine true bit.

• For example, the message 1011:

▶ I send: 11111000001111111111 (i.e. k = 5)

▶ You receive 11011001100111111111

▶ You determine the correct message by voting 1011

• Recall the rate of a code is len(original message)
len(code word)

• Good robustness, but our rate is 20% (4 extra bits for every 1 bit of
information).

Section 2

Hamming Codes

Better Codes

• Can we do better?

• Claim: For 11 bits, we can correct 1 error, and detect 2 errors, using
only 5 bits, to make “nice” 16 bit blocks

▶ 11/16 = 68.75% rate!

Block Messages

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

• Consider a 16-bit block

Block Messages

0 0 0 0
0 1 1 0
0 1 0 0
1 0 1 1

• Consider a 16-bit block
• We want to fill it with

the message 01101001011

Block Messages

0 0 0 0
0 1 1 0
0 1 0 0
1 0 1 1

• Consider a 16-bit block
• We want to fill it with

the message 01101001011
• We’ll use the remaining 5

bits to mark parity of
certain regions of the
block.

Hamming Codes

0 1 0 0
0 1 1 0
0 1 0 0
1 0 1 1

• We use the parity bit to
keep the marked region
even parity (ignoring
parity bits themselves).

Hamming Codes

0 1 1 0
0 1 1 0
0 1 0 0
1 0 1 1

• We use the parity bit to
keep the marked region
even parity (ignoring
parity bits themselves).

Hamming Codes

0 1 1 0
1 1 1 0
0 1 0 0
1 0 1 1

• We use the parity bit to
keep the marked region
even parity (ignoring
parity bits themselves).

Hamming Codes

0 1 1 0
1 1 1 0
0 1 0 0
1 0 1 1

• We use the parity bit to
keep the marked region
even parity (ignoring
parity bits themselves).

Hamming Codes

0 1 1 0
1 1 1 0
0 1 0 0
1 0 1 1

• What about the bit in
the zero position?

• We’ll set it to keep the
parity of the entire table.

• This allows us to detect a
second error, should one
exist.

Hamming Codes

• We can detect the error by checking each parity bit, and fix it!

0 1 1 0
1 1 0 0
0 1 0 0
1 0 1 1

0 1 1 0
1 1 0 0
0 1 0 0
1 0 1 1

0 1 1 0
1 1 0 0
0 1 0 0
1 0 1 1

0 1 1 0
1 1 0 0
0 1 0 0
1 0 1 1

Questions?

Making More Codes

• What we described was a (15,11) Extended Hamming Code. (11 bits
of message, 4 bit EC parity, 1 bit detection)

• You can easily make any (2n − 1, 2n − (n+ 1)) Hamming Code the
same way.

▶ Place each parity bit in the row/column corresponding to powers of 2

• In a 2n block, we can efficiently detect 2 errors, and correct 1 error.

In Practice

• You can implement hamming code processing in hardware, or in
software

• When sending info, errors tend to happen in bursts.

• Interleave blocks to spread out the errors that could happen.

Section 3

Hamming Bound

Hamming Bound

• Exactly how efficient can we get with error correcting codes?

• We have a lower bound called the Hamming Bound

• It gives us the efficiency of how well any error correcting code can
utilize the space within the entire code word.

• Codes that achieve this bound are called Perfect Codes

Hamming Bound

Let Σ = {0, 1}. Let AΣ(n, d) be the maximum possible size of a block
code C of length n, with minimum hamming distance d between elements
of the block code.

Then,

AΣ(n, d) ≤
|Σ|n

⌊(d−1)/2⌋∑
k=0

(
n
k

)
(|Σ| − 1)k

(Recall that hamming distance is the number of flips you need to reach
another string)

Hamming Bound

• We’re effectively that over all strings of length n (|Σ|n),

• If we can make at most t = ⌊(d− 1)/2⌋ errors,

• Then our code C covers the sum over all possible errors up to k ≤ t,
choosing k bits to flip to some other bit.

Hamming Bound

Let Σ = {0, 1}. Let AΣ(n, d) be the maximum possible size of a block
code C of length n, with minimum hamming distance d between elements
of the block code.

Then,

A2(n, d) ≤
2n

⌊(d−1)/2⌋∑
k=0

(
n
k

)
(Recall that hamming distance is the number of flips you need to reach
another string)

What does AΣ(n, d) mean?

• We have a q-ary language (q = |Σ|), of which we consider some string
of length n

• How many strings can we make from at most d changes?

Computing AΣ(n, d) for Hamming Codes

• Our basic (15,11) Hamming code (no 0 bit), requires three flips to go
from one valid code to another

• While we can detect errors of 2 flips or less, once we go above 2,
distinguishing between one valid message to another is impossible.

• This means that the number of strings we can represent with our
(15,11) Hamming code, with a minimum hamming distance of 3 is
211 = 2048

Computing AΣ(n, d) for Hamming Codes

• So let’s compute the Hamming bound for AΣ(15, 3)

215∑1
k=0

(
15
k

)
(2− 1)k

=
215

16
= 2048

• So our (15,11) Hamming code matches our hamming bound, thus it
is considered a Perfect Code

Practical, not Perfect

• Our extended Hamming code includes that 0 bit to detect one more
error.

• This means that in a 16 bit code word, we have a minimum hamming
distance of 4

• AΣ(16, 4) ≤ 3855.06, but we still can only represent 2048 messages.

• Even though its not perfect, this is the mechanism still used in error
correction within RAM on your computers. Nice powers of 2 are easy
to send around.

The purpose of computing is insight, not numbers.

— Richard Hamming, PhD UIUC (1960s)

	Review
	Hamming Codes
	Hamming Bound

