# Hamming Codes 

Sam Ruggerio

## Outline

Review

Hamming Codes

Hamming Bound

# Section 1 

Review

## Error Correction and Detection

- Sending messages between parties might be subject to noise and errors.
- How do we:
- Detect Errors?
- Correct Errors?
- The goal is to send a message that minimizes the necessary redundancy to achieve both goals.


## Error Correction and Detection

- Easy solution: send $k$ bits for every bit. Use majority voting to determine true bit.
- For example, the message 1011:
- I send: 11111000001111111111 (i.e. $k=5$ )
- You receive 11011001100111111111
- You determine the correct message by voting 1011
- Recall the rate of a code is $\frac{l e n(\text { original message) }}{l e n(\text { code word })}$
- Good robustness, but our rate is 20\% (4 extra bits for every 1 bit of information).

Section 2

Hamming Codes

## Better Codes

- Can we do better?
- Claim: For 11 bits, we can correct 1 error, and detect 2 errors, using only 5 bits, to make "nice" 16 bit blocks
- $11 / 16=68.75 \%$ rate!


## Block Messages

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

- Consider a 16 -bit block


## Block Messages

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |

- Consider a 16-bit block
- We want to fill it with the message 01101001011


## Block Messages

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |

- Consider a 16 -bit block
- We want to fill it with the message 01101001011
- We'll use the remaining 5 bits to mark parity of certain regions of the block.


## Hamming Codes

| 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |

- We use the parity bit to keep the marked region even parity (ignoring parity bits themselves).


## Hamming Codes

| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |

- We use the parity bit to keep the marked region even parity (ignoring parity bits themselves).


## Hamming Codes

| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |

- We use the parity bit to keep the marked region even parity (ignoring parity bits themselves).


## Hamming Codes

| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |

- We use the parity bit to keep the marked region even parity (ignoring parity bits themselves).


## Hamming Codes

| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |

- What about the bit in the zero position?
- We'll set it to keep the parity of the entire table.
- This allows us to detect a second error, should one exist.


## Hamming Codes

- We can detect the error by checking each parity bit, and fix it!

| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |


| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |


| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |


| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 |

Questions?

## Making More Codes

- What we described was a $(15,11)$ Extended Hamming Code. $(11$ bits of message, 4 bit EC parity, 1 bit detection)
- You can easily make any $\left(2^{n}-1,2^{n}-(n+1)\right)$ Hamming Code the same way.
- Place each parity bit in the row/column corresponding to powers of 2
- In a $2^{n}$ block, we can efficiently detect 2 errors, and correct 1 error.


## In Practice

- You can implement hamming code processing in hardware, or in software
- When sending info, errors tend to happen in bursts.
- Interleave blocks to spread out the errors that could happen.

Section 3

Hamming Bound

## Hamming Bound

- Exactly how efficient can we get with error correcting codes?
- We have a lower bound called the Hamming Bound
- It gives us the efficiency of how well any error correcting code can utilize the space within the entire code word.
- Codes that achieve this bound are called Perfect Codes


## Hamming Bound

Let $\Sigma=\{0,1\}$. Let $A_{\Sigma}(n, d)$ be the maximum possible size of a block code $C$ of length $n$, with minimum hamming distance $d$ between elements of the block code.

Then,

$$
A_{\Sigma}(n, d) \leq \frac{|\Sigma|^{n}}{\sum_{k=0}^{\lfloor(d-1) / 2\rfloor}\binom{n}{k}(|\Sigma|-1)^{k}}
$$

(Recall that hamming distance is the number of flips you need to reach another string)

## Hamming Bound

- We're effectively that over all strings of length $n\left(|\Sigma|^{n}\right)$,
- If we can make at most $t=\lfloor(d-1) / 2\rfloor$ errors,
- Then our code $C$ covers the sum over all possible errors up to $k \leq t$, choosing $k$ bits to flip to some other bit.


## Hamming Bound

Let $\Sigma=\{0,1\}$. Let $A_{\Sigma}(n, d)$ be the maximum possible size of a block code $C$ of length $n$, with minimum hamming distance $d$ between elements of the block code.

Then,

$$
A_{2}(n, d) \leq \frac{2^{n}}{\sum_{k=0}^{\lfloor(d-1) / 2\rfloor}\binom{n}{k}}
$$

(Recall that hamming distance is the number of flips you need to reach another string)

## What does $A_{\Sigma}(n, d)$ mean?

- We have a $q$-ary language $(q=|\Sigma|)$, of which we consider some string of length $n$
- How many strings can we make from at most d changes?


## Computing $A_{\Sigma}(n, d)$ for Hamming Codes

- Our basic $(15,11)$ Hamming code (no 0 bit), requires three flips to go from one valid code to another
- While we can detect errors of 2 flips or less, once we go above 2 , distinguishing between one valid message to another is impossible.
- This means that the number of strings we can represent with our $(15,11)$ Hamming code, with a minimum hamming distance of 3 is $2^{11}=2048$


## Computing $A_{\Sigma}(n, d)$ for Hamming Codes

- So let's compute the Hamming bound for $A_{\Sigma}(15,3)$

$$
\frac{2^{15}}{\sum_{k=0}^{1}\binom{15}{k}(2-1)^{k}}=\frac{2^{15}}{16}=2048
$$

- So our $(15,11)$ Hamming code matches our hamming bound, thus it is considered a Perfect Code


## Practical, not Perfect

- Our extended Hamming code includes that 0 bit to detect one more error.
- This means that in a 16 bit code word, we have a minimum hamming distance of 4
- $A_{\Sigma}(16,4) \leq 3855.06$, but we still can only represent 2048 messages.
- Even though its not perfect, this is the mechanism still used in error correction within RAM on your computers. Nice powers of 2 are easy to send around.

The purpose of computing is insight, not numbers.

- Richard Hamming, PhD UIUC (1960s)

