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Basics



Computability

• A program is something that takes in a string as input and has one as
output, all within some model of computation – more on this in a bit.

• A natural question to ask is if there is a correspondence between
strings and the programs that output them.

• To what extent might a “large” string be produced by a “short”
program, i.e. how much might we be able to “compress” strings?
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• TM’s are defined over a finite alphabet, have an infinite tape that
has the input at the start of it, a read head with internal state that
starts at the start of the tape and can write or move left or right all
according to some finite instructions (transition function based on
the head’s state and character in the cell it’s over).
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Computability

• This turns out to be as powerful as any computer we know! The
Church Turing thesis states that anything a computer can do can be
done by a Turing machine.

• When we say model of computation, we mean anything that can
represent all the functions a computer can, which all your favorite
programming languages (C, Python) can do since they’re Turing
Complete (can do anything a Turing machine can).

• Note that programs/TM’s etc are defined by precise descriptions, so
in a sense they are strings themselves!

• One can devise an encoding scheme of all programs – many such
encodings exist, could use all binary strings or all ASCII strings, etc.
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Computability

• More importantly, the encoding is done in such a way that a program
can recognize it – such that we can define a program to simulate the
behavior of a machine as a result of parsing the encoding.

• This means we can define a program to be able to simulate any other
program – a very important result!

• Other important definitions: A set is “recursively enumerable,” or RE
if there exists a program that can give a “yes” answer to any string in
the set. A set is “computable” if a program like that exists that also
gives a “no” answer for any string not in the set.

• These properties are not guaranteed in general due to possibility of
infinite looping.
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Kolmogorov Complexity

• Intuitively, 057835292 has the same probability of being selected as
000000000, yet one of these feels more “complex” to us.

• Solution: We define the complexity of a string be the length of the
shortest program that prints it. This is Kolmogorov complexity.

• Limitation: Must be relative to a model of computation /
programming language you fix.

• Gives us a powerful tool for understanding compression, the
distribution of “complexity” among finite strings themselves, and
even limitative results of mathematics as a whole.
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Some Fundamental Proofs



Invariance Theorem

• It might seem like we are completely limited talking about
Kolmogorov complexity across languages since it is relative to them.

• Rather, the K complexity only differs by a constant factor between
different languages.
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Invariance Theorem

Theorem
Given 2 languages L1, L2 and their respective K complexities K1,K2, for
any string s, K1(s) ≤ K2(s) + c for some constant c.

Proof
1. Suppose we have an interpreter in L1 for strings p representing

programs in L2, Interpret(p), meaning it will produce the output
that p would have produced in L2.

2. Let P be the shortest program in L2 that outputs s.
3. Then Interpret(P ) will produce s in L1.
4. We know |Interpret(P )| = |Interpret|+ |P |, but |P | = K2(s) and

we can consider |Interpret| to be some constant c.
5. Therefore K1(s) ≤ K2(s) + c.
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Universal Lossless Compression

Theorem
For every n, there exists a length n string a whose Kolmogorov
complexity K(a) is at least n.

Proof
1. Suppose for contradiction that every string a in {0, 1}n, of which

there are 2n of, K(a) < n.
2. Then we have a one-to-one function f , such that f(a) will output the

string representing the shortest program that outputs a.
3. Number of shorter strings is∑n−1

i=0

∣∣{0, 1}i∣∣ = 1 + 2 + 22 + ...+ 2n−1 = 2n − 1
4. For f to be one-to-one, there would have be ≥ 2n output programs

but we only have 2n − 1. Contradiction
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Universal Lossless Compression

• What this tells us is there will always be incompressible strings
where K(a) ≥ |a|, i.e. universal lossless compression is impossible!

• We can now prove an even more general fact regarding the
computability of K!
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Uncomputability of K
The proof uses the fact programs can simulate other programs and that there is a
binary string encoding scheme for all programs

Theorem
There is no possible program P (x, i) that outputs “yes” if K(x) = i and
“no” if K(x) ̸= i.

Proof
• Suppose there is such a program P . We construct another program

Q(j) as follows:

Q(j):
for each binary string encoding x of a program

Simulate P (x, j)
If simulation outputs “yes”

print x ⟨⟨ This will be the first program x s.t. K(x) = j ⟩⟩
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Uncomputability of K Continued
Proof

• Let y be the output of Q(j).

• Therefore P (y, j) outputs “yes”, which implies K(y) = j
• Since Q(j) is a program that outputs y, the length of Q(j) must be

at least j.
• We know Q(j) includes P in it’s definition, in addition to needing to

write the input j, so |Q(j)| = |P |+ |j|+ c where c is some constant
overhead by P .

• We need at most log(j) bits to write j, so we obtain the inequality
K(y) = j ≤ |Q(j)| ≤ |P |+ log(j) + c ⇒ j − log(j) ≤ |P |+ c

• This will be true no matter what j we pick, yet since j − log(j) is
unbounded and P and c are fixed, there will be a j that makes it
greater than |P |+ c, a contradiction.

• Therefore Kolmogorov complexity is not computable, there cannot
exist such a program P .
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What we can say about the complexity of strings?



Average Complexity of Finite Strings

• A natural question to ask is what the distribution of Kolmogorov
complexity over the average binary string really looks like

• Intuitively we would expect most strings to appear random, and it
turns out this intution is true: The vast majority of strings are not
very compressible.
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Theorem
If A is the set of all strings a where K(a) < n− k, then |A|

|{0,1}n| <
1
2k

Proof
1. There is a one-to-one function from A to the set C of all binary

strings with length less than n− k.
▶ |C| = 2n−k − 1

2. So |A| ≤ |C| = 2n−k − 1 ⇒ |A| < 2n−k.
3. Therefore |A|

|{0,1}n| <
2n−k

2n = 1
2k
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Average Complexity of Finite Strings

• This implies the proportion of binary strings that can be compressed
to be 2 bits shorter is less than a half, the ones that can be
compressed to be 3 bits shorter is less than a quarter.

• When looking at strings of length 100, the proportion of them that
can be compressed to be even just 10 bits less is less than 1

29
, or less

than about 0.2%

• Not only are most strings hard to compress, but we can actually
prove an upper bound on the Kolmogorov complexity that we are
even able to PROVE a string to have.
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Proof System
• Before we continue, we’ll introduce the notion of a proof system.

• A proof system is defined via

▶ A computable language (set of strings) which we’ll usually take to be
well formed formulas expressed in some logic

▶ A distinguished RE subset of that language we call the axioms

▶ A set of theorems that include the axioms.

▶ A set of inference rules that can be programmed and can be applied
to any theorem to create other theorems.

The set of all theorems that can be produced this way is then called
the proof system.

• Intuitively this is just a model of how we prove things, but the key
insight is we only ever do proofs using computable inference rules.



Proof System
• Before we continue, we’ll introduce the notion of a proof system.

• A proof system is defined via

▶ A computable language (set of strings) which we’ll usually take to be
well formed formulas expressed in some logic

▶ A distinguished RE subset of that language we call the axioms

▶ A set of theorems that include the axioms.

▶ A set of inference rules that can be programmed and can be applied
to any theorem to create other theorems.

The set of all theorems that can be produced this way is then called
the proof system.

• Intuitively this is just a model of how we prove things, but the key
insight is we only ever do proofs using computable inference rules.



Proof System
• Before we continue, we’ll introduce the notion of a proof system.

• A proof system is defined via

▶ A computable language (set of strings) which we’ll usually take to be
well formed formulas expressed in some logic

▶ A distinguished RE subset of that language we call the axioms

▶ A set of theorems that include the axioms.

▶ A set of inference rules that can be programmed and can be applied
to any theorem to create other theorems.

The set of all theorems that can be produced this way is then called
the proof system.

• Intuitively this is just a model of how we prove things, but the key
insight is we only ever do proofs using computable inference rules.



Proof System
• Before we continue, we’ll introduce the notion of a proof system.

• A proof system is defined via

▶ A computable language (set of strings) which we’ll usually take to be
well formed formulas expressed in some logic

▶ A distinguished RE subset of that language we call the axioms

▶ A set of theorems that include the axioms.

▶ A set of inference rules that can be programmed and can be applied
to any theorem to create other theorems.

The set of all theorems that can be produced this way is then called
the proof system.

• Intuitively this is just a model of how we prove things, but the key
insight is we only ever do proofs using computable inference rules.



Proof System
• Before we continue, we’ll introduce the notion of a proof system.

• A proof system is defined via

▶ A computable language (set of strings) which we’ll usually take to be
well formed formulas expressed in some logic

▶ A distinguished RE subset of that language we call the axioms

▶ A set of theorems that include the axioms.

▶ A set of inference rules that can be programmed and can be applied
to any theorem to create other theorems.

The set of all theorems that can be produced this way is then called
the proof system.

• Intuitively this is just a model of how we prove things, but the key
insight is we only ever do proofs using computable inference rules.



Example Inference Rules in First Order Logic

• Clearly proof systems are RE – one can just make a program that
starts at the axioms and repeatedly apply the inference rules – like
these from first order logic.



Math is Incomplete

• One result that immediately follows from the uncomputability of K
is Godel’s First Incompleteness theorem, that any RE proof system
for mathematics will not be able prove or disprove every statement in
the language associated with it.

• This is because if we could, then the fact the proof system is RE
implies we can have a program loop through all theorems till it finds
the statement for what the Kolmogorov complexity of a string is or
isn’t for any string, which would make K computable which we
already proved is impossible.

• Godel’s result was more powerful, applying to any system that can
prove facts regarding basic arithmetic, though this still applies since
logical statements about programs may be encoded as arithmetical
statements – i.e. Godel numbering.
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Godel Numbering

• Fundamental Theorem of Arithmetic ensures that any Godel number
has a unique prime factorization - allowing one to retrieve the
original statement using the prime factors.



Chaitin’s Incompleteness Theorem

“The proof of this closely resembles G. G. Berry’s paradox of ‘the first
natural number which cannot be named in less than a billion words.’ The
version of Berry’s paradox that will do the trick is ‘that object having the
shortest proof that its algorithmic information content is greater than a
billion bits.” – Gregory Chaitin



Chaitin’s Incompleteness Theorem

Theorem
For any proof system F , there is a largest number L such that F cannot
prove that the Kolmogorov complexity of any bit string is more than L.

• Suppose not, so there is some RE system F such that for any L, F
can prove K(x) = L for some x.

• We construct a program P that takes in an integer L and iterates
through all proofs in F until it finds a proof of K(x) = L for some x,
then prints that x.
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Chaitin’s Incompleteness Theorem Continued

• Let x be the output of P for a certain L, therefore K(x) = L, and
since P (L) outputs x, L ≤ P (L) = |P |+ |L|+ c ≤ |P |+ log(L) + c
where c is some constant overhead by P .

• This means regardless of L, L− log(L) ≤ |P |+ c, but since P and c
are fixed, for large enough L this will clearly not hold.

• Therefore for any such proof system F , there must exist an L such
that no string can be proven to have Kolmogorov complexity of L, or
any number bigger since it will still violate the inequality.
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Chaitin’s Incompleteness Theorem Continued

• This further implies any program that would take in an input and
calculate a lower bound on it’s Kolmogorov complexity cannot
exceed some limit.



The End
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