AKA Gallager Codes
 Low Density Parity Check Codes

Aditya

Outline

Formalizing Error Correction Codes

Simple Soft Decision Decoders

Formalizing Linear Block Codes

Low Density Parity Check Codes

Section 1

Formalizing Error Correction Codes

The Model

- Transmitter AKA modulator does bits \mapsto signals.
- In our model, noise source adds Gaussian noise $n(t)$ that is independent from symbol to symbol.

Modulation

- Remember, the goal is to map bits (0s and 1s) to a signal.
- We will use binary phase shift keying (BPSK), which works by changing (modulating) the phase of a basis function. Then, $0 \mapsto s_{0}(t)$ and $1 \mapsto s_{1}(t)$:

$$
\begin{aligned}
& s_{0}(t)=\sqrt{\frac{2 E}{T}} \sin \left(2 \pi f t+\frac{\pi}{2}\right) \\
& s_{1}(t)=\sqrt{\frac{2 E}{T}} \sin \left(2 \pi f t-\frac{\pi}{2}\right)
\end{aligned}
$$

- Looks hard, but phasors can help!

Constellations

- Constellation diagram (very similar to phasor diagram) - in \mathbb{C}, the argument gives the phase shift, and the norm gives the amplitude of a signal.

- So, BPSK maps $0 \mapsto+1$ and $1 \mapsto-1$. Note that this is a mapping from $\mathbb{F}_{2} \mapsto \mathbb{R}$.

BPSK in time domain

Through the channel

We add in white Gaussian noise (AWGN).

$$
y(t)=x(t)+n(t)
$$

where $x(t)$ is the input signal, and $n(t)$ is a Gaussian process, and independent for each symbol.

Demodulate!

$$
\rho=\int_{0}^{T} y(t) \sqrt{\frac{2 E}{T}} \sin \left(2 \pi f t+\frac{\pi}{2}\right) d t
$$

- Important: $\rho \in \mathbb{R}$.
- Why does this work? There's a little bit of analog signal processing that's not too relevant...in essence, the process involves re-multiplying by the carrier signal, then using a low pass filter to pick out the data.

What do we do with ρ ?

Remember, we need to map back from $\mathbb{R} \mapsto \mathbb{F}_{2}$.
Hard decision decoding: Threshold at 0 to get the output bit:

$$
b= \begin{cases}0, & \rho>0 \\ 1, & \rho \leq 0\end{cases}
$$

Soft decision decoding: We'll talk about it soon!

Binary symmetric channels

- It can be shown that BPSK over AWGN is a BSC.

How to compute bit-flip probability p ?

The bit-error rate p is given by:

$$
\operatorname{BER}=P(t=+1) \cdot P(n \leq-1)+P(t=-1) \cdot P(n \geq+1)
$$

Assuming an even mix of 0 s and 1 s ,

$$
\mathrm{BER}=\frac{1}{2} P(n \leq-1)+\frac{1}{2} P(n \geq+1)
$$

Recall, the noise is a Gaussian distribution with variance σ.

After some statistics...

The transition probability of our model is:

$$
p=\mathrm{BER}=Q\left(\frac{1}{\sigma}\right)
$$

$$
Q(x):=\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
$$

One last thing: power!

Signal-to-noise ratio:

$$
\mathrm{SNR}_{\mathrm{dB}}=10 \log _{10}\left(\frac{P_{\text {signal }}}{P_{\text {noise }}}\right)
$$

In discrete time,

$$
\mathrm{SNR}=\frac{E_{s}}{\sigma^{2}}=\frac{E_{s}}{\frac{N_{0}}{2}}=\frac{2 E_{s}}{N_{0}}
$$

where E_{s} is the energy per symbol, $N_{0} / 2$ is the power spectral density (variance) of the noise signal.

SNR for BPSK

$$
E_{s}=\frac{(-1)^{2}+1^{2}}{2}=1 \Longrightarrow \mathrm{SNR}=\frac{1}{\sigma^{2}}
$$

We get a nice relation between SNR and BER for our model:

$$
\mathrm{BER}=Q(\sqrt{\mathrm{SNR}})
$$

SNR vs. BER

Red line is a Monte-Carlo simulation that counts bit errors for AWGN ($\sigma=1$). We usually use E_{b} / N_{0} (SNR per bit) instead of $2 E_{s} / N_{0}$ (SNR) in these graphs.

What do error correction codes do?

Shannon Limit and Capacity-Approaching Codes

$$
E_{b}=E_{s} / R=n E_{s} / k
$$

Section 2

Simple Soft Decision Decoders

$n=3$ Repetition Code

What's the easiest way to make sure someone understands exactly what you're saying?

Repeat yourself (say it three times)!

Encoder

Note that the rate of this code is $k / n=1 / 3$.

m	c	\vec{s}
0	000	$[+1,+1,+1]$
1	111	$[-1$,

Hard decision decoder

The output from the demodulator is some vector of real numbers, say $\vec{r}=\left[r_{0}, r_{1}, r_{2}\right]$. Then, hard decision decode this to \vec{b} by thresholding at zero. Finally, use a majority function:

\vec{b}	\hat{c}
000	000
001	000
010	000
100	000
011	111
101	111
110	111
111	111

So, we're happy with ourselves

- Not so fast - let's analyze this code within the formal framework we laid out earlier.

$$
\frac{E_{b}}{N_{0}}=\frac{E_{s} / \sigma^{2}}{2 R}=\frac{3}{2 \sigma^{2}}
$$

- The probability of a bit-flip is then:

$$
\Longrightarrow p=Q\left(\sqrt{\frac{2 E_{b}}{3 N_{0}}}\right)
$$

- The overall probability of an error is $\operatorname{BER}=3 p^{2}(1-p)+p^{3}$.

Plotting the hard decision decoder for $n=3$ repetition code

Soft decision decoding

- The received real vector \vec{r} can be analyzed in a real vector space.
- Compare the correlation of \vec{r} with the codewords, and pick the output symbol based on that. If:

$$
\vec{r} \cdot\left[\begin{array}{lll}
+1 & +1 & +1
\end{array}\right]>\vec{r} \cdot\left[\begin{array}{lll}
-1 & -1 & -1
\end{array}\right]
$$

$\hat{c}=000$ else $\hat{c}=111$.

- More simply, check $r_{0}+r_{1}+r_{2}>0$.
- This is an optimal maximum likelihood decoder.

BER vs SNR per bit for optimal decoding of repetition code

$(7,4)$ Hamming Code

Recall from Anakin's introductory meeting on codes the $(7,4)$ Hamming code.

Hard decision decoder

- After the hard decision thresholding of the received vector \vec{r} around 0 to get \vec{b},
- Correct to the codeword at the closest Hamming distance from \vec{b}.
- This is the minimum distance decoder for the Hamming code.

Soft decision decoder

- Find the closest codeword to \vec{r} in Euclidean distance.
- That is, in the vector space \mathbb{R}^{n}.
- Clearly, this is (much) more complex, and becomes hard to implement as k increases for a Hamming code.
- This is the maximum likelihood decoder for the Hamming code.

BER vs SNR per bit for Hamming $(7,4)$ Decoders

SISO Decoding

- There is another kind of decoder, the soft-in soft-out decoder.
- We start with implementing it for the repetition code (this is really easy and just for demonstrating the technique).

Belief

- The output of the SISO decoder is a real vector $\vec{L}=\left[\begin{array}{lll}L_{0} & L_{1} & L_{2}\end{array}\right]$, where each L_{i} indicates the strength of the "belief" that bit c_{i} of the codeword is (say) 0 .
- What does this mean? Imagine you received the vector [3.2, 4.3, 2.4].
- This indicates that it's very likely, in each case, that the transmitted symbol was +1 .

Tell me more about your beliefs

- What about $\vec{r}=[0.02,-3.2,-0.6]$?
- A hard-decision decoder would turn this into $[1,-1,-1]$.
- However, for a SISO decoder and a repetition code, you know that all the bits should be the same.
- How sure are you about 0.02 ?

Formalizing the intuition

The probabilities below are of interest (Bayes' rule):

$$
\begin{aligned}
& P\left(c_{0}=0 \mid r_{0}\right)=\frac{f\left(r_{0} \mid c_{0}=0\right) P\left(c_{0}=0\right)}{f\left(r_{0}\right)} \\
& P\left(c_{0}=1 \mid r_{0}\right)=\frac{f\left(r_{0} \mid c_{0}=1\right) P\left(c_{0}=1\right)}{f\left(r_{0}\right)}
\end{aligned}
$$

It is natural to divide these quantities:

$$
\frac{P\left(c_{0}=0 \mid r_{0}\right)}{P\left(c_{0}=1 \mid r_{0}\right)}=\frac{f\left(r_{0} \mid c_{0}=0\right)}{f\left(r_{0} \mid c_{0}=1\right)}
$$

Intrinsic log likelihood ratios

Recall that the noise is normally distributed, so $f\left(r_{0} \mid c_{0}=0\right)=1+N\left(0, \sigma^{2}\right)$ and $f\left(r_{0} \mid c_{0}=1\right)=-1+N\left(0, \sigma^{2}\right)$. Plugging in the Gaussian PDF and simplifying gives

$$
\frac{P\left(c_{0}=0 \mid r_{0}\right)}{P\left(c_{0}=1 \mid r_{0}\right)}=\exp \frac{2 r_{0}}{\sigma^{2}}
$$

So, the intrinsic log likelihood ratio of r_{0} is:

$$
l_{0}=\log \frac{P\left(c_{0}=0 \mid r_{0}\right)}{P\left(c_{0}=1 \mid r_{0}\right)}=\frac{2 r_{0}}{\sigma^{2}}
$$

This is general for any intrinsic LLR in BPSK/AWGN. (Typically, we ignore the constant factor here, since it's merely a constant scaling of our belief.)

Output log likelihood ratios

We still want to get L_{i}, which is a belief in the context of the other elements of the received vector \vec{r}. Formally, we want:

$$
L_{i}=\log \frac{P\left(c_{i}=0 \mid r_{0}, r_{1}, r_{2}\right)}{P\left(c_{i}=1 \mid r_{0}, r_{1}, r_{2}\right)}
$$

Skipping the Bayes' rule transformation, we see that:

$$
L_{i}=\log \frac{f\left(r_{0}, r_{1}, r_{2} \mid c_{0}=0\right)}{f\left(r_{0}, r_{1}, r_{2} \mid c_{0}=1\right)}
$$

Since this is an AWGN channel, each normal distribution in this joint PDF is independent, so, after inserting a product of similar distributions as in the intrinsic case, we simply get:

$$
L_{i}=\frac{2}{\sigma^{2}}\left(r_{0}+r_{1}+r_{2}\right)
$$

SISO Decoding a Repetition Code

Thus, after adjusting for the scaling factors, the SISO decoder output is given by

$$
L_{0}=\underbrace{r_{0}}_{\text {intrinsic }}+\underbrace{r_{1}+r_{2}}_{\text {extrinsic }}
$$

The "extrinsic" is really saying "what do r_{1} and r_{2} tell me about r_{1} ?" In our example $([0.02,-3.2,-0.6])$, this would result in: $[-3.78,-3.78,-3.78]$.

A more interesting SISO Decoder: SPC Codes

- For a message m, XOR all the bits, and tack on the parity bit at the end. This is codeword c.
- This is the single parity check code.
- Consider, the $(3,2)$ SPC code:

m	c
00	000
01	011
10	101
11	110

- Let's design a SISO decoder, whose input is \vec{r}, and output is a 3-dimensional vector \vec{L} of log likelihood ratios that corresponds to \vec{r}.

Extrinsic information

- It's clear what r_{0} says about c_{0} : it's just the intrinsic belief.
- What do r_{1} and r_{2} say about c_{0}, though?
- Formally, we want:

$$
l_{e x t, 0}=\log \frac{P\left(c_{0}=0 \mid r_{1}, r_{2}\right)}{P\left(c_{0}=1 \mid r_{1}, r_{2}\right)}
$$

- We know $c_{0}=c_{1} \oplus c_{2}$. So,

$$
P\left(c_{0}=0 \mid r_{1}, r_{2}\right)=p_{2} p_{3}+\left(1-p_{2}\right)\left(1-p_{3}\right)
$$

where

$$
p_{2}=\log \frac{P\left(c_{2}=0 \mid r_{2}\right)}{P\left(c_{2}=1 \mid r_{2}\right)} \quad p_{3}=\log \frac{P\left(c_{3}=0 \mid r_{3}\right)}{P\left(c_{3}=1 \mid r_{3}\right)}
$$

After some boring algebra...

We get that the relation $c_{0}=c_{1} \oplus c_{2}$ in the likelihood domain is

$$
\tanh \frac{l_{\text {ext }, 0}}{2}=\tanh \frac{l_{1}}{2} \cdot \tanh \frac{l_{2}}{2}
$$

Breaking this up into the sign and the absolute values with logarithms, $\operatorname{sgn} l_{\text {ext }, 0}=\operatorname{sgn} l_{1} \operatorname{sgn} l_{2}$

$$
\log \left(\tanh \frac{\left|l_{\text {ext }, 0}\right|}{2}\right)=\log \left(\tanh \frac{\left|l_{1}\right|}{2}\right)+\log \left(\tanh \frac{\left|l_{2}\right|}{2}\right)
$$

Define $f(x):=\log \tanh |x| / 2$. Then, $f(x)=f^{-1}(x)$. So,

$$
\left|l_{e x t, 0}\right|=f\left(f\left(l_{1}\right)+f\left(l_{2}\right)\right)
$$

SISO Decoder for SPC Codes

$$
L_{0}=l_{0}+l_{e x t, 0}
$$

where

$$
l_{0}=\frac{2}{\sigma^{2}} r_{0}
$$

and

$$
\begin{gathered}
\left|l_{e x t, 0}\right|=f\left(f\left(l_{1}\right)+f\left(l_{2}\right)\right) \\
\operatorname{sgn} l_{e x t, 0}=\operatorname{sgn} l_{1} \operatorname{sgn} l_{2}
\end{gathered}
$$

where

$$
f(x):=\log \tanh \frac{|x|}{2}
$$

Computing $f(x)$ is hard
Approximate it!

Min-sum approximation

Small values dominate, so $f\left(\left|l_{1}\right|\right)+f\left(\left|l_{2}\right|\right)=f\left(\min \left(\left|l_{1}\right|,\left|l_{2}\right|\right)\right)$. Translating back to our original formula,

$$
\left|l_{\text {ext }, 0}\right|=f\left(f\left(l_{1}\right)+f\left(l_{2}\right)\right)=f\left(f\left(\min \left(\left|l_{1}\right|,\left|l_{2}\right|\right)\right)\right)=\min \left(\left|l_{1}\right|,\left|l_{2}\right|\right)
$$

Since f is its own inverse.

SISO Decoder for General (n, n-1) SPC Code

Generalizes very naturally:

$$
l_{0}=\frac{2}{\sigma^{2}} r_{0}
$$

and

$$
l_{e x t, 0}=\left(\operatorname{sgn}\left(l_{1}\right) \operatorname{sgn}\left(l_{2}\right) \cdots \operatorname{sgn}\left(l_{n-1}\right)\right) \min \left(\left|l_{1}\right|,\left|l_{2}\right|, \ldots,\left|l_{n-1}\right|\right)
$$

... and so on for each L_{i}. Low-hanging optimizations here for both the sign and the minimum operations.

Section 3

Formalizing Linear Block Codes

Introduction

- From Wikipedia: "A linear code of length n and dimension k is a linear subspace C with dimension k of the vector space \mathbb{F}_{q}^{n} where \mathbb{F}_{q} is the finite field with q elements."
- More simply, a linear block code takes an input vector of bits \vec{m}, and produces $\vec{c}=[\vec{m} \vec{p}]$, where \vec{p} is the parity check vector.
- \vec{m} is of dimension (length) k, \vec{p} is of dimension p, and \vec{c} is of dimension $n=k+p$.
- The elements of \vec{p} are computed by XORing (adding modulo 2) certain bits of \vec{m}.

Example of simple $(6,3)$ linear block code

Parity computation is given by:

$$
\begin{aligned}
& p_{0}=m_{0} \oplus m_{1} \\
& p_{1}=m_{1} \oplus m_{2} \\
& p_{2}=m_{2} \oplus m_{0}
\end{aligned}
$$

Clearly, the rate is $R=1 / 2$.

Generator matrices

Clearly,

$$
\left[\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right]=\left[\begin{array}{lll}
m_{0} & m_{1} & m_{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

To get the full systematic codeword, tack on I_{3} :

$$
\left[\begin{array}{llllll}
m_{0} & m_{1} & m_{2} & p_{0} & p_{1} & p_{2}
\end{array}\right]=\left[\begin{array}{lll}
m_{0} & m_{1} & m_{2}
\end{array}\right] \underbrace{\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]}_{G}
$$

This matrix is known as the generator matrix for the code: $G=\left[I_{k} P\right]$. It has rank k, and its rows form the basis for the code space.

Parity check matrix

- Given by $H=\left[P^{T} I_{n-k}\right]$, a $(n-k) \times n$ matrix.

$$
\underbrace{\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]}_{H}\left[\begin{array}{l}
m_{0} \\
m_{1} \\
m_{2} \\
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- In general, given a codeword, $H c^{T}=0$.

Exercise

Construct the generator matrix G and parity check matrix H for the $n=3$ repetition code.
Bonus: do the same for the $(7,4)$ Hamming code.

Solution

$$
\begin{aligned}
G & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \\
H & =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Section 4

Low Density Parity Check Codes

Some of the keywords should now make sense

- LDPC codes are linear block codes with a very sparse parity check matrix H.
- That is, popcount $(\mathrm{H}) \ll n(n-k)$.

Tanner Graphs and Parity Check Matrices

Important: any one row of H that is, each check node corresponds to a single parity check code.

$$
\mathbf{H}=\left(\begin{array}{cccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \begin{gathered}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{gathered}
$$

(a) Parity-check matrix

(b) Tanner graph

Code Generation and Encoding

- Isn't terribly interesting, and we may come back to it later.
- Fundamentally the same idea as encoding any linear block code: a matrix multiplication (alternately, using the parity check matrix to figure out which bits to XOR).
- To optimize code performance, encoding complexity, memory footprint, a "base matrix" is carefully selected, then expanded in a certain way using circulant matrices to get the parity check matrix.
- The really interesting part of LDPC is the decoding algorithm.

LDPC Decoding

- SISO
- Iterative, belief propagation algorithm
- Uses the min-sum approximation from earlier
- For SISO decoding, recall that we want

$$
L_{i}=\log \frac{P\left(c_{i}=0 \mid \vec{r}\right)}{P\left(c_{i}=1 \mid \vec{r}\right)}
$$

that indicates the strength of the "belief" that bit c_{i} of the codeword is (say) 0 .

Plan: use the Tanner graph

- Variable nodes (LHS) are connected to check nodes (RHS).
- Pass extrinsic information through the edges of the graph, so all the nodes "work together", adding their knowledge.
- Four steps of the decoding algorithm:

1. Initialization
2. Check-node processing
3. Variable-node processing
4. If syndrome is not zero or maximum iterations not reached, GOTO 2.

Visualization in the Tanner Graph

Initialize all the variable nodes with their channel (intrinsic) LLR l_{i}.

$$
\begin{gathered}
\mathbf{H}=\left(\begin{array}{cccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right. \\
\text { (a) Parity-check matrix }
\end{gathered}
$$

(b) Tanner graph

Check-node processing

This is an SPC! Check node (1) (say β_{1}) will do a SISO SPC decoding.

Variable-node processing

Each check node returns the extrinsic information from the SPC computation for each variable node (say α_{i}). This forms a repetition code!

Some properties

- More iterations is better
- Using the min-sum approximation causes a degradation in error-rate performance, but makes SISO SPC check node decoders very simple.
- Small cycles in the Tanner graph (low girth) can ruin performance for iterative decoding.
- Characterizing performance of LDPC codes requires "density evolution" analysis.

From https://www.inference.org.uk/mackay/codes/gifs/

