
AKA Gallager Codes

Low Density Parity Check Codes

Aditya

Outline

Formalizing Error Correction Codes

Simple Soft Decision Decoders

Formalizing Linear Block Codes

Low Density Parity Check Codes

Section 1

Formalizing Error Correction Codes

The Model

• Transmitter AKA modulator does bits 7→ signals.
• In our model, noise source adds Gaussian noise n(t) that is independent

from symbol to symbol.

Modulation

• Remember, the goal is to map bits (0s and 1s) to a signal.
• We will use binary phase shift keying (BPSK), which works by changing

(modulating) the phase of a basis function. Then, 0 7→ s0(t) and 1 7→ s1(t):

s0(t) =
√

2E
T

sin
(

2πft + π

2

)
s1(t) =

√
2E
T

sin
(

2πft − π

2

)
• Looks hard, but phasors can help!

Constellations

• Constellation diagram (very similar to phasor diagram) – in C, the argument
gives the phase shift, and the norm gives the amplitude of a signal.

• So, BPSK maps 0 7→ +1 and 1 7→ −1. Note that this is a mapping from
F2 7→ R.

BPSK in time domain

Through the channel

We add in white Gaussian noise (AWGN).

y(t) = x(t) + n(t)

where x(t) is the input signal, and n(t) is a Gaussian process, and independent
for each symbol.

Demodulate!

ρ =

∫ T

0
y(t)

√
2E
T

sin
(

2πft + π

2

)
dt

• Important: ρ ∈ R.
• Why does this work? There’s a little bit of analog signal processing that’s

not too relevant…in essence, the process involves re-multiplying by the
carrier signal, then using a low pass filter to pick out the data.

What do we do with ρ?

Remember, we need to map back from R 7→ F2.
Hard decision decoding: Threshold at 0 to get the output bit:

b =

{
0, ρ > 0
1, ρ ≤ 0

Soft decision decoding: We’ll talk about it soon!

Binary symmetric channels

• It can be shown that BPSK over AWGN is a BSC.

How to compute bit-flip probability p?

The bit-error rate p is given by:

BER = P(t = +1) · P(n ≤ −1) + P(t = −1) · P(n ≥ +1)

Assuming an even mix of 0s and 1s,

BER =
1
2P(n ≤ −1) + 1

2P(n ≥ +1)

Recall, the noise is a Gaussian distribution with variance σ.

After some statistics…

The transition probability of our model is:

p = BER = Q
(

1
σ

)

Q(x) := 1
2erfc

(
x√
2

)

One last thing: power!

Signal-to-noise ratio:
SNRdB = 10 log10

(
Psignal
Pnoise

)
In discrete time,

SNR =
Es

σ2 =
Es
N0
2

=
2Es

N0

where Es is the energy per symbol, N0/2 is the power spectral density (variance)
of the noise signal.

SNR for BPSK

Es =
(−1)2 + 12

2 = 1 =⇒ SNR =
1
σ2

We get a nice relation between SNR and BER for our model:

BER = Q
(√

SNR
)

SNR vs. BER
Red line is a Monte-Carlo simulation that counts bit errors for AWGN
(σ = 1).We usually use Eb/N0 (SNR per bit) instead of 2Es/N0 (SNR) in these
graphs.

What do error correction codes do?

Shannon Limit and Capacity-Approaching Codes
Eb = Es/R = nEs/k

Section 2

Simple Soft Decision Decoders

n = 3 Repetition Code

What’s the easiest way to make sure someone understands exactly what you’re
saying?

Repeat yourself (say it three times)!

Encoder

Note that the rate of this code is k/n = 1/3.

m c s⃗

0 000 [+1, +1, +1]
1 111 [-1, -1, -1]

Hard decision decoder

The output from the demodulator is some vector of real numbers, say
r⃗ = [r0, r1, r2]. Then, hard decision decode this to b⃗ by thresholding at zero.
Finally, use a majority function:

b⃗ ĉ

000 000
001 000
010 000
100 000
011 111
101 111
110 111
111 111

So, we’re happy with ourselves

• Not so fast – let’s analyze this code within the formal framework we laid out
earlier.

Eb

N0
=

Es/σ
2

2R
=

3
2σ2

• The probability of a bit-flip is then:

=⇒ p = Q

(√
2Eb

3N0

)

• The overall probability of an error is BER = 3p2(1 − p) + p3.

Plotting the hard decision decoder for n = 3 repetition
code

Soft decision decoding

• The received real vector r⃗ can be analyzed in a real vector space.
• Compare the correlation of r⃗ with the codewords, and pick the output

symbol based on that. If:

r⃗ ·
[
+1 +1 +1

]
> r⃗ ·

[
−1 −1 −1

]
ĉ = 000 else ĉ = 111.

• More simply, check r0 + r1 + r2 > 0.
• This is an optimal maximum likelihood decoder.

BER vs SNR per bit for optimal decoding of repetition
code

(7, 4) Hamming Code

Recall from Anakin’s introductory meeting on codes the (7, 4) Hamming code.

Hard decision decoder

• After the hard decision thresholding of the received vector r⃗ around 0 to get
b⃗,

• Correct to the codeword at the closest Hamming distance from b⃗.
• This is the minimum distance decoder for the Hamming code.

Soft decision decoder

• Find the closest codeword to r⃗ in Euclidean distance.
• That is, in the vector space Rn.
• Clearly, this is (much) more complex, and becomes hard to implement as k

increases for a Hamming code.
• This is the maximum likelihood decoder for the Hamming code.

BER vs SNR per bit for Hamming (7,4) Decoders

SISO Decoding

• There is another kind of decoder, the soft-in soft-out decoder.
• We start with implementing it for the repetition code (this is really easy and

just for demonstrating the technique).

Belief

• The output of the SISO decoder is a real vector L⃗ = [L0 L1 L2], where each
Li indicates the strength of the “belief” that bit ci of the codeword is (say) 0.

• What does this mean? Imagine you received the vector [3.2, 4.3, 2.4].
• This indicates that it’s very likely, in each case, that the transmitted symbol

was +1.

Tell me more about your beliefs

• What about r⃗ = [0.02, − 3.2, − 0.6]?
• A hard-decision decoder would turn this into [1, − 1, − 1].
• However, for a SISO decoder and a repetition code, you know that all the

bits should be the same.
• How sure are you about 0.02?

Formalizing the intuition

The probabilities below are of interest (Bayes’ rule):

P(c0 = 0|r0) =
f (r0|c0 = 0)P(c0 = 0)

f (r0)

P(c0 = 1|r0) =
f (r0|c0 = 1)P(c0 = 1)

f (r0)

It is natural to divide these quantities:

P(c0 = 0|r0)

P(c0 = 1|r0)
=

f (r0|c0 = 0)
f (r0|c0 = 1)

Intrinsic log likelihood ratios

Recall that the noise is normally distributed, so f (r0|c0 = 0) = 1 + N (0, σ2) and
f (r0|c0 = 1) = −1 + N (0, σ2). Plugging in the Gaussian PDF and simplifying
gives

P(c0 = 0|r0)

P(c0 = 1|r0)
= exp

2r0
σ2

So, the intrinsic log likelihood ratio of r0 is:

l0 = log
P(c0 = 0|r0)

P(c0 = 1|r0)
=

2r0
σ2

This is general for any intrinsic LLR in BPSK/AWGN. (Typically, we ignore the
constant factor here, since it’s merely a constant scaling of our belief.)

Output log likelihood ratios

We still want to get Li , which is a belief in the context of the other elements of
the received vector r⃗ . Formally, we want:

Li = log
P(ci = 0|r0, r1, r2)

P(ci = 1|r0, r1, r2)

Skipping the Bayes’ rule transformation, we see that:

Li = log
f (r0, r1, r2|c0 = 0)
f (r0, r1, r2|c0 = 1)

Since this is an AWGN channel, each normal distribution in this joint PDF is
independent, so, after inserting a product of similar distributions as in the
intrinsic case, we simply get:

Li =
2
σ2 (r0 + r1 + r2)

SISO Decoding a Repetition Code

Thus, after adjusting for the scaling factors, the SISO decoder output is given by

L0 = r0︸︷︷︸
intrinsic

+ r1 + r2︸ ︷︷ ︸
extrinsic

The “extrinsic” is really saying “what do r1 and r2 tell me about r1?”
In our example ([0.02, − 3.2, − 0.6]), this would result in: [−3.78,−3.78,−3.78].

A more interesting SISO Decoder: SPC Codes

• For a message m, XOR all the bits, and tack on the parity bit at the end.
This is codeword c.

• This is the single parity check code.
• Consider, the (3, 2) SPC code:

m c

00 000
01 011
10 101
11 110

• Let’s design a SISO decoder, whose input is r⃗ , and output is a 3-dimensional
vector L⃗ of log likelihood ratios that corresponds to r⃗ .

Extrinsic information

• It’s clear what r0 says about c0: it’s just the intrinsic belief.
• What do r1 and r2 say about c0, though?
• Formally, we want:

lext,0 = log
P(c0 = 0|r1, r2)

P(c0 = 1|r1, r2)

• We know c0 = c1 ⊕ c2. So,

P(c0 = 0|r1, r2) = p2p3 + (1 − p2)(1 − p3)

where
p2 = log

P(c2 = 0|r2)

P(c2 = 1|r2)
p3 = log

P(c3 = 0|r3)

P(c3 = 1|r3)

After some boring algebra…

We get that the relation c0 = c1 ⊕ c2 in the likelihood domain is

tanh
lext,0

2 = tanh
l1
2 · tanh l2

2

Breaking this up into the sign and the absolute values with logarithms,
sgn lext,0 = sgn l1 sgn l2

log

(
tanh

|lext,0|
2

)
= log

(
tanh

|l1|
2

)
+ log

(
tanh

|l2|
2

)
Define f (x) := log tanh |x|/2. Then, f (x) = f −1(x). So,

|lext,0| = f (f (l1) + f (l2))

SISO Decoder for SPC Codes

L0 = l0 + lext,0

where
l0 =

2
σ2 r0

and
|lext,0| = f (f (l1) + f (l2))

sgn lext,0 = sgn l1 sgn l2
where

f (x) := log tanh
|x|
2

Computing f (x) is hard
Approximate it!

Min-sum approximation

Small values dominate, so f (|l1|) + f (|l2|) = f (min (|l1|, |l2|)). Translating back to
our original formula,

|lext,0| = f (f (l1) + f (l2)) = f (f (min (|l1|, |l2|))) = min (|l1|, |l2|)

Since f is its own inverse.

SISO Decoder for General (n, n-1) SPC Code

Generalizes very naturally:

l0 =
2
σ2 r0

and
lext,0 = (sgn (l1) sgn (l2) · · · sgn (ln−1))min (|l1|, |l2|, . . . , |ln−1|)

…and so on for each Li . Low-hanging optimizations here for both the sign and
the minimum operations.

Section 3

Formalizing Linear Block Codes

Introduction

• From Wikipedia: “A linear code of length n and dimension k is a linear
subspace C with dimension k of the vector space Fn

q where Fq is the finite
field with q elements.”

• More simply, a linear block code takes an input vector of bits m⃗, and
produces c⃗ = [m⃗ p⃗], where p⃗ is the parity check vector.

• m⃗ is of dimension (length) k, p⃗ is of dimension p, and c⃗ is of dimension
n = k + p.

• The elements of p⃗ are computed by XORing (adding modulo 2) certain bits
of m⃗.

Example of simple (6, 3) linear block code

Parity computation is given by:

p0 = m0 ⊕ m1

p1 = m1 ⊕ m2

p2 = m2 ⊕ m0

Clearly, the rate is R = 1/2.

Generator matrices

Clearly, [
p0 p1 p2

]
=
[
m0 m1 m2

] 1 0 1
1 1 0
0 1 1

To get the full systematic codeword, tack on I3:

[
m0 m1 m2 p0 p1 p2

]
=
[
m0 m1 m2

] 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

︸ ︷︷ ︸

G

This matrix is known as the generator matrix for the code: G = [Ik P]. It has
rank k, and its rows form the basis for the code space.

Parity check matrix

• Given by H = [PT In−k], a (n − k)× n matrix.

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1

︸ ︷︷ ︸

H

m0
m1
m2
p0
p1
p2

 =

0
0
0

• In general, given a codeword, HcT = 0.

Exercise

Construct the generator matrix G and parity check matrix H for the n = 3
repetition code.
Bonus: do the same for the (7, 4) Hamming code.

Solution

G =
[
1 1 1

]
H =

[
1 0 1
0 1 1

]

Section 4

Low Density Parity Check Codes

Some of the keywords should now make sense

• LDPC codes are linear block codes with a very sparse parity check matrix H .
• That is, popcount(H) << n(n − k).

Tanner Graphs and Parity Check Matrices
Important: any one row of H that is, each check node corresponds to a single
parity check code.

Code Generation and Encoding

• Isn’t terribly interesting, and we may come back to it later.
• Fundamentally the same idea as encoding any linear block code: a matrix

multiplication (alternately, using the parity check matrix to figure out which
bits to XOR).

• To optimize code performance, encoding complexity, memory footprint, a
“base matrix” is carefully selected, then expanded in a certain way using
circulant matrices to get the parity check matrix.

• The really interesting part of LDPC is the decoding algorithm.

LDPC Decoding

• SISO
• Iterative, belief propagation algorithm
• Uses the min-sum approximation from earlier
• For SISO decoding, recall that we want

Li = log
P(ci = 0|⃗r)
P(ci = 1|⃗r)

that indicates the strength of the “belief” that bit ci of the codeword is
(say) 0.

Plan: use the Tanner graph

• Variable nodes (LHS) are connected to check nodes (RHS).
• Pass extrinsic information through the edges of the graph, so all the nodes

“work together”, adding their knowledge.
• Four steps of the decoding algorithm:

1. Initialization
2. Check-node processing
3. Variable-node processing
4. If syndrome is not zero or maximum iterations not reached, GOTO 2.

Visualization in the Tanner Graph
Initialize all the variable nodes with their channel (intrinsic) LLR li .

Check-node processing

This is an SPC! Check node (1) (say β1) will do a SISO SPC decoding.

Variable-node processing

Each check node returns the extrinsic information from the SPC computation for
each variable node (say αi). This forms a repetition code!

Some properties

• More iterations is better
• Using the min-sum approximation causes a degradation in error-rate

performance, but makes SISO SPC check node decoders very simple.
• Small cycles in the Tanner graph (low girth) can ruin performance for

iterative decoding.
• Characterizing performance of LDPC codes requires “density evolution”

analysis.

Thanks for coming!
From https://www.inference.org.uk/mackay/codes/gifs/

https://www.inference.org.uk/mackay/codes/gifs/

	Formalizing Error Correction Codes
	Simple Soft Decision Decoders
	Formalizing Linear Block Codes
	Low Density Parity Check Codes

	anm0:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

