
Linear and Cyclic Codes

Hassam



The Basic Problem (revisited)

• Sending messages between parties might be subject to errors.

• How do we:

▶ Detect Errors?

▶ Correct Errors?

• The goal is to send a message that minimizes the necessary
redundancy to achieve both goals.

• What if we only care about certain common types of errors?



Section 1

Mathing up Hamming Codes



Reminder of Hamming Codes

• We can detect the error by checking each parity bit, and fix it!

0 1 1 0
1 1 0 0
0 1 0 0
1 0 1 1

0 1 1 0
1 1 0 0
0 1 0 0
1 0 1 1

0 1 1 0
1 1 0 0
0 1 0 0
1 0 1 1

0 1 1 0
1 1 0 0
0 1 0 0
1 0 1 1



Going Higher

• What does it really mean to correct an error?

• Let’s consider a simple code: “best 2 out of 3”.

• Encode message m by taking each bit and repeating it three times.

• Our valid “words”: 000 and 111, but the language contains 23 words.

• We are raising the dimension of our message space, giving us more
room to detect errors.



Going Higher



Hamming (7, 4) (because the dimensions are smaller)

• (n, k) code means n bits to encode a k bit message.

• Consider a message with 4 bits. We can use 3 additional bits of
information to “search” over these bits and detect errors, just like the
earlier Hamming example.

• p0 = m0 +m1 +m3, p1 = m0 +m2 +m3, p2 = m1 +m2 +m3. All
mod 2.

• Convince yourself that we can detect, and find, any 1-bit error using
these check bits.



Linear Equations =⇒ Linear Algebra

Can we create a matrix G that converts our message into a code? mG = c

mG =
[
m0 m1 m2 m3

] 
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 =

[
m0 m1 m2 m3 m0 +m1 +m3 m0 +m2 +m3 m1 +m2 +m3

]
=[

m0 m1 m2 m3 p0 p1 p2
]
= c



Linear Algebra =⇒ ?

• Turning Hamming Codes into a matrix gives us linearity for free!

• Namely, the sum of any two messages is a valid message, and, by
linearity, the sum of any two codewords is also a codeword.

• Let’s see if we can prove some nice properties using this.



Minimum Distance (revisited)

• The Minimum Distance of a code is the minimum difference between
any two codewords.

▶ ∆(x, y) is the number of positions i where characters x[i] ̸= y[i]

• More formally min
c1,c2

∆(c1, c2)

• But this is just min
c1,c2

∆(0, c2 − c1)

• But again, this is just min
c

∆(0, c) = min
c

w(c)



Parity Checking (but with linear algebra this time)

• Can we find a matrix, H, such that HcT = 0. Why?

• Linearity!

• Suppose we transmitted some code c with error e, c+ e, then:
H(c+ e)T = HcT +HeT = HeT . What is HeT ?

• It is the column in H associated with the error

• Since we know where in H the error is, we know which bit of the
message it corresponds to. We can both detect errors and correct
them! We call this the “syndrome” vector.

• HGT = 0 and so it follows that H =
[
P |In−k

]
. Verify this yourself.



Generalizing Hamming Codes

• Hamming codes are a code such that the Parity-Check matrix has
columns with every possible combination of 0s and 1s, except for all
0s.

• So to make a Hamming code for higher dimensions, create a matrix
of every single binary number, rotate them so that the identity is in
the last columns, and the remaining columns are our parity checks.



Generalizing Hamming Codes


1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1





Generalizing Hamming Codes

Moving the previous columns around to form a parity check matrix then
gives into:

0 1 1 0 1 0 1 1 1 0 1 | 1 0 0 0
0 0 1 1 0 1 1 1 0 1 1 | 0 1 0 0
1 1 0 1 1 1 1 1 0 0 0 | 0 0 1 0
1 1 0 1 0 0 0 1 1 1 1 | 0 0 0 1


Each row covers one bit of the message, together covering them all.



Section 2

Cyclic Codes



Motivation

• More math!

• Most errors occur in “bursts”. You might have 5 errors in a message,
but they will generally all be concentrated near each other.

• Working under this constraint, rather than detecting arbitrary errors,
can give us a lot more power.



Cyclic

• Cyclic codes are relatively self explanatory.

• C is cyclic if (c1, c2, c3, . . . , cn) ∈ C =⇒ (cn, c1, c2, . . . , cn−1) ∈ C.

• Cyclic codes by themselves are not really useful



(Linear) Cyclic

• A much more useful and practical type of codespace is one where
every codeword is cyclic AND linear.

• Example codespace: 000000, 100100, 010010, 001001, 110110,
011011, 101101, 111111.

• Every codeword can be written as the sum of two other codewords,
and every sum of codewords is a codeword. Similarly, shifting any
codeword will produce a valid codeword.



Polynomials (an aside)

• We can think of these codewords as a sequence, and create a
polynomial called a generating function. For example:
100100 = 1x0 + 0x1 + 0x2 + 1x3 + 0x4 + 0x5 = 1 + x3.

• Polynomials have a lot of nice properties similar to the integers.

• Namely, we can do polynomial division, and modular arithmetic over
polynomials. We will often write Z2[x] to talk about polynomials
with {0, 1} as the coefficients.



Modular Arithmetic with Polynomials

• Consider (x3 + x2 + 1)/(x2 + 1) = (x2 + 1)q(x) + r(x).

▶ What are q(x) and r(x) if our polynomial is in Z2[x]?

▶ q = x+ 1, r = −x = x.

• So, x3 + x2 + 1 ≡ x mod (x2 + 1).

• We will primarily work mod polynomials of the form f(x)± 1

▶ So f(x)± 1 acts like 0

▶ You can think of substituting every occurrence of f(x) with 1.



Cyclic Codes fall out naturally

• Let’s go back to one of our initial codewords: 100100 ≡ 1 + x3.

• The maximum degree of a polynomial in this codespace is x5

• If we take our codewords mod x6 + 1, then
x · (1 + x3) = x+ x4 ≡ 010010, which is another codeword.

• We can continue to shift our codewords by multiplying by x, and if
we go over x5, our modulo wraps it back around! So,
c(x) ∈ C =⇒ xc(x) ∈ C.



Linearity strikes back

Recall that our codewords are not just cyclic, but also linear. So, if
c(x) ∈ C, then c(x) + c(x) ∈ C.

Since xnc(x) ∈ C, this means that (1 + x+ x2 + . . .)c(x) ∈ C. In
otherwords, for any polynomial, g(x), then g(x)c(x) ∈ C.



Generator Polynomial

If we can make other valid codewords using any polynomial, we just need
1 codeword to “generate” the rest. (I apologize for the differing uses of
generate, blame whoever came up with this stuff).

Consider again: 000000, 100100, 010010, 001001, 110110, 011011, 101101,
111111. Can we generate all of the other codewords from 100100, or
g(x) = 1 + x3, mod x6 + 1?



Generator Polynomial

0 = 0 · g(x)
1 + x3 = 1 · g(x)
x+ x4 = xg(x)

x2 + x5 = x2g(x)

1 + x+ x3 + x4 = (1 + x)g(x)

x+ x2 + x4 + x5 = (x+ x2)g(x)

1 + x2 + x3 + x5 = (1 + x2)g(x)

and 1 + x+ x2 + x3 + x4 + x5 = (1 + x+ x2)g(x). Is the generator
polynomial within a codespace unique?



Generator Polynomial

• No it is not!

• We could have used any of the first three codewords and shifted
things accordingly, but in general, we call the polynomial with the
lowest degree the generator polynomial.

• We can encode a message of size k using a generator polynomial with
max degree r = n− k, c(x) = m(x)g(x).

• Since these are linear codes, we can create a generator matrix just
like we did for linear codes.

• These are not super interesting, so I’ll leave it up to you all to think
about how to form them.



Correcting

• Briefly, if c(x) = m(x)g(x), we can do m(x) = c(x)/g(x) to get back
our original message, if there were no errors.

• If there was an error, we’ll have a remainder. For single-bit errors,
just like our linear codes, we can create a table of remainders and
match our remainder to figure out where the error occurred.

• But, this is no better than Hamming Codes.



Cyclic Redundancy Checks

We said earlier that cyclic codes can be used to detect burst errors. How?
Let’s consider this simple scheme, commonly used in networking, known
as the Cyclic Redundancy Check.

• Take our message m(x), and multiply it by xr, where r is the degree
of our generator polynomial for our codespace, and then divide it by
our generator g(x).

• We will end up with xrm(x) = Q(x)g(x) +R(x).

• Under Z2, addition and subtraction are the same operation
=⇒ Q(x)g(x) = xrm(x)−R(x) = xrm(x) +R(x).

• If we transmit T (x) = xrm(x) +R(x), this will be divisible by g(x).



Cyclic Redundancy Checks ?
= Parity Bits

• We will only miss errors if they are divisible by g(x), so we could
select a g(x) such that it is not divisible by “common” things.

▶ Indeed, this is how most modern tooling using CRC does it. But let’s
not rely on that.

• Suppose we transmit T ′(x), where T ′ has some error that causes an
odd number of flipped bits.

• Assuming that our initial message has an even number of 1s, if we’ve
flipped an odd number of bits, then T ′(1) = 1.

• So, as long as g(1) = 0, we will detect any odd number of bit flips.
Picking g(x) = xi + 1 will always ensure that g(1) = 0.

In fact, g(x) = x+ 1 is equivalent to a parity check bit.



Cyclic Redundancy Checks

• So, we can detect any number of odd bit flips, just like a parity bit.
What else can we do?

• Suppose we had a sequence of errors in a row.

• Let E(x) = T (x)− T ′(x) be which bits are flipped.

• g(x) divides T (x)

▶ E(x) doesn’t divide T (x) =⇒ g(x) doesn’t divide T ′(x).

What does E(x) look like if we had a sequence of r errors?

E(x) = xn1 + xn2 + . . .+ xnr , where ni is a decreasing sequence.



Math Magic

• So, we can factor E(x) = xnr(xn1−nr + xn2−n4 + . . .+ 1).

• g(x) = xi+1 cannot divide xnr . So, CRC can only fail if g(x) divides
xn1−nr + xn2−nr + . . .+ 1. How can we ensure that never happens?

• Choose g(x) such that it’s degree is larger than the number of errors
you’d like to detect.



Is it worth the effort?

• Dividing polynomials is hard. I don’t want to do it.

• The computer is more than happy to do it for you. Dividing
polynomials over Z2 is just a problem of shifting bits and XORing
them.

• CRC is fast at detecting and correcting errors of size 1, but it’s true
power shines in detecting any size of burst errors.

CRC is being used by every single device on the planet when it
communicates over the internet. CRC is used the data layer and the
transport layer of all computer networks. Sometime soon, we’ll discuss
more advanced codes (Reed-Solomon) that are used for a lot of other
things you’re familiar with, like barcodes and QR codes.



The field of ’information theory’ began by using the old hardware paradigm of

transportation of data from point to point.

— MARSHALL MCLUHAN (1988)


	Mathing up Hamming Codes
	Cyclic Codes

