Introduction to Qubits

Parth Deshmukh, Andrey Vlasov

Parth

- Senior in Mathematics
- Main interests: Algebra, Logic, Econometrics, Combinatorics
- Vice President of MATRIX
- Coffee Club

Andrey

- Freshman in Mathematics
- Main interests: Math, Quantum Computing, Entrepreneurship, Quantitative Finance
- Zero2One Startup Incubator
- Tutoring Startup

MATRIX

- We've got two events this week - free pizza and snacks at both!
- On the ruler and compass problem: tomorrow, Oct 3rd, 6:30pm in 1051 Lincoln Hall
- Trivia Night: Thursday, Oct 5th, 6:30pm in 1022 Lincoln Hall
- Scan the QR code for our Discord

Outline

What is a qubit?

Measuring and representing qubit states

Qubit errors and why it's so hard to correct them

Fixing errors (?)

Important notes

- This is part 1 of 2 in a series on quantum error correction. Make sure to come to the next one!
- Some advice: when learning quantum mechanics, treat it like a game with rules to play. (Unless you're a physicist.)

Section 1

What is a qubit?

Classical versus Quantum Bits

- A classical bit can be either 0 or 1
- Quantum bits (qubits) can be 0,1 , or a superposition of the two
- What does that mean mathematically?

Qubits, Formally

- A qubit is represented by a statevector in a state space
- The state space is a Hilbert space, aka \mathbb{C}^{k}
- There are other Hilbert spaces, but we only really need \mathbb{C}^{k}
- Hilbert spaces have inner products and associated norms that make it a complete metric space: these are linear algebra concepts you don't need to understand, but the point is having these makes everything nicer
- A statevector is simply a unit (norm 1) vector of the state space
- Examples: $|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1},|+\rangle=\frac{1}{\sqrt{2}}\binom{1}{1},|i\rangle=\frac{1}{\sqrt{2}}\binom{1}{-i}$

What was that notation!?

- Quantum mechanics uses bra-ket notation
- $|\phi\rangle$ (a "ket") is a vector, $\langle\phi|$ (a "bra") is its conjugate transpose
- Example: $|0\rangle=\binom{1}{0},\langle 0|=\left(\begin{array}{ll}1 & 0\end{array}\right)$ or $|\chi\rangle=\binom{0}{i},\langle\chi|=\left(\begin{array}{ll}0 & -i\end{array}\right)$
- Putting the two together: $\langle\phi \mid \psi\rangle$ is the inner product of $|\phi\rangle$ and $|\psi\rangle$
- Examples:
- $\langle\chi \mid 0\rangle=(1 * 0)+(0 * i)=0$
- $\langle\chi \mid \chi\rangle=(0 * 0)+(-i * i)=1$

More notation

I promise it'll be over soon

- $|0\rangle$ and $|1\rangle$ are an orthonormal basis over \mathbb{C}^{2}; by convention, we denote this the computational basis
- We could use any orthonormal basis! There's nothing special about $\{|0\rangle,|1\rangle\}$ versus the other ONBs except that it's the easiest to write down
- An arbitrary statevector $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}$
- Recall we said statevectors have unit length; in other words, $\langle\psi \mid \psi\rangle=1$
- Exercise: $\langle\psi \mid \psi\rangle=1$ enforces conditions on α and β. What are they?

Quantum measurement

- So how do we work with qubit states?
- Measurement principle: we cannot directly get the statevector $|\psi\rangle$ of some quantum state. Measuring the state changes it!
- We have to measure it, collapsing it to one of two vectors in some basis (the computational basis, usually)
- To measure $|\psi\rangle$, take the dot products: $\langle\psi \mid 0\rangle^{2}$ is the probability it collapses to 0 , and $\langle\psi \mid 1\rangle^{2}$ is the probability it collapses to 1
- Exercise: Find the probabilities of $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ collapsing to 0 or 1

Representing statevectors

- By definition, a statevector has norm 1
- This leads to a geometrical intuition of what a statevector looks like
- In two dimensions, we can represent all vectors of norm 1 with a unit circle
- In quantum mechanics, we represent 3D statevectors using a unit sphere

The Bloch Sphere

The Bloch Sphere

- Recall that an arbitrary statevector $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is a superposition of the two states $|0\rangle$ and $|1\rangle$ chosen as our ONB
- Thus, a qubit can be any point on the Bloch sphere if we properly choose α and β
- We do so by letting $\alpha=\cos \frac{\theta}{2}$ and $\beta=e^{i \phi} \sin \frac{\theta}{2}$, so that θ is the polar angle and ϕ is the azimuthal angle
- We now have a system of polar coordinates for describing statevectors of a qubit
- Just like with wavefunctions, the squared norms $|\alpha|^{2}$ and $|\beta|^{2}$ describe the probability of the qubit collapsing into either of our two basis states

Back to Reality

How does this relate to actual qubits?

- Physical qubits are things like electrons or photons, which have certain properties that are described via quantum states, e.g. the spin of an electron
- We need the mathematics of quantum mechanics to be able to describe these qubits, and how we can mess with them
- The statevector tracks the quantum state of a physical qubit
- Our allowed operations are matrices that don't change the length of a vector: the special unitary group $\operatorname{SU(n)}$
- Spoiler: quantum gates are exactly these matrices!

Section 3

Qubit errors and why it's so hard to correct them

What is an error?

- In classical computing, an error on a bit flips that bit
- In quantum computing, a qubit can be in an infinite number of positions!
- An error is any perturbation of a qubit's state
- $|0\rangle$ could become $|1\rangle$ or $|+\rangle$, or with a smaller perturbation, $\frac{1}{\sqrt{6}}\binom{5}{1}$

Errors on the Bloch Sphere

- Infinitely many positions on the Bloch Sphere mean infinitely many possible errors!
- In real quantum computers, small interactions with the environment can cause the qubit to "drift" on the Bloch Sphere
- A partial bit flip error rotates the statevector about the x-axis
- A phase flip error rotates the statevector about the z-axis
- We want to find a way to correct both types of errors

So how do we fix an error?

- An easy classical method is called a repetition code
- Add redundancy to a bit: 0 becomes 000
- If any one bit flips, we can spot it and fix it
- To protect against two bit flips, have four bits of redundancy: 0 becomes 00000
- Exercise: how many bits of redundancy do we need to protect against n bit flips?

Redundancy for qubits

- So we just need to add redundant qubits, right?
- Nope. There's an important theorem called the no-cloning theorem:

Theorem

If $|\psi\rangle$ is an arbitrary quantum state, we cannot make a copy of it. That is, we cannot go from $|\psi\rangle|0\rangle \rightarrow|\psi\rangle|\psi\rangle$.

- Note: $|\psi\rangle|0\rangle$ is the tensor product of $|\psi\rangle$ and $|0\rangle$; we represent multiple qubits in a system by taking their tensor product
- The no-cloning theorem rules out repetition codes entirely
- Sketch of proof: if we want to duplicate a state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$, we need to know α and β. But we can't measure them!

Conclusion

- No-cloning theorem rules out basic error correction schemes
- We need something more sophisticated
- There are classical error correcting codes, that instead of using redundancy, use parity bits
- We'll use a similar idea, indirectly checking the qubits to make a bit-flip code. To be covered next week!

To imagine the quantum spin of a particle, imagine a spinning ball, except it's not a ball and it's not spinning.

- John Physics (1000 BC)

Bibliography

目 T.G. Wong.
Introduction to Classical and Quantum Computing.
Rooted Groove., 2022.

