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Important notes

• This is part 1 of 2 in a series on quantum error correction. Make sure
to come to the next one!

• Some advice: when learning quantum mechanics, treat it like a game
with rules to play. (Unless you’re a physicist.)



Section 1

What is a qubit?



Classical versus Quantum Bits

• A classical bit can be either 0 or 1

• Quantum bits (qubits) can be 0, 1, or a superposition of the two

• What does that mean mathematically?



Qubits, Formally

• A qubit is represented by a statevector in a state space

• The state space is a Hilbert space, aka Ck

▶ There are other Hilbert spaces, but we only really need Ck

▶ Hilbert spaces have inner products and associated norms that make it
a complete metric space: these are linear algebra concepts you don’t
need to understand, but the point is having these makes everything
nicer

• A statevector is simply a unit (norm 1) vector of the state space

• Examples: |0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
, |+⟩ = 1√

2

(
1
1

)
, |i⟩ = 1√

2

(
1
−i

)



What was that notation!?

• Quantum mechanics uses bra-ket notation

• |ϕ⟩ (a "ket") is a vector, ⟨ϕ| (a "bra") is its conjugate transpose

▶ Example: |0⟩ =
(
1
0

)
, ⟨0| =

(
1 0

)
or |χ⟩ =

(
0
i

)
, ⟨χ| =

(
0 −i

)
• Putting the two together: ⟨ϕ|ψ⟩ is the inner product of |ϕ⟩ and |ψ⟩
• Examples:

▶ ⟨χ|0⟩ = (1 ∗ 0) + (0 ∗ i) = 0

▶ ⟨χ|χ⟩ = (0 ∗ 0) + (−i ∗ i) = 1



More notation
I promise it’ll be over soon

• |0⟩ and |1⟩ are an orthonormal basis over C2; by convention, we
denote this the computational basis

▶ We could use any orthonormal basis! There’s nothing special about
{|0⟩, |1⟩} versus the other ONBs except that it’s the easiest to write
down

• An arbitrary statevector |ψ⟩ = α|0⟩+ β|1⟩ =
(
α
β

)
• Recall we said statevectors have unit length; in other words,
⟨ψ|ψ⟩ = 1

• Exercise: ⟨ψ|ψ⟩ = 1 enforces conditions on α and β. What are they?



Quantum measurement

• So how do we work with qubit states?

• Measurement principle: we cannot directly get the statevector |ψ⟩ of
some quantum state. Measuring the state changes it!

• We have to measure it, collapsing it to one of two vectors in some
basis (the computational basis, usually)

• To measure |ψ⟩, take the dot products: ⟨ψ|0⟩2 is the probability it
collapses to 0, and ⟨ψ|1⟩2 is the probability it collapses to 1

• Exercise: Find the probabilities of |ψ⟩ = α|0⟩+ β|1⟩ collapsing to 0
or 1



Representing statevectors

• By definition, a statevector has norm 1

• This leads to a geometrical intuition of what a statevector looks like

• In two dimensions, we can represent all vectors of norm 1 with a unit
circle

• In quantum mechanics, we represent 3D statevectors using a unit
sphere



The Bloch Sphere



The Bloch Sphere

• Recall that an arbitrary statevector |ψ⟩ = α|0⟩+ β|1⟩ is a
superposition of the two states |0⟩ and |1⟩ chosen as our ONB

• Thus, a qubit can be any point on the Bloch sphere if we properly
choose α and β

• We do so by letting α = cos θ
2 and β = eiϕ sin θ

2 , so that θ is the
polar angle and ϕ is the azimuthal angle

• We now have a system of polar coordinates for describing
statevectors of a qubit

• Just like with wavefunctions, the squared norms |α|2 and |β|2
describe the probability of the qubit collapsing into either of our two
basis states



Back to Reality
How does this relate to actual qubits?

• Physical qubits are things like electrons or photons, which have
certain properties that are described via quantum states, e.g. the
spin of an electron

• We need the mathematics of quantum mechanics to be able to
describe these qubits, and how we can mess with them

• The statevector tracks the quantum state of a physical qubit

• Our allowed operations are matrices that don’t change the length of
a vector: the special unitary group SU(n)

▶ Spoiler: quantum gates are exactly these matrices!



Section 3

Qubit errors and why it’s so hard to correct them



What is an error?

• In classical computing, an error on a bit flips that bit

• In quantum computing, a qubit can be in an infinite number of
positions!

• An error is any perturbation of a qubit’s state

• |0⟩ could become |1⟩ or |+⟩, or with a smaller perturbation, 1√
6

(
5
1

)



Errors on the Bloch Sphere

• Infinitely many positions on the Bloch Sphere mean infinitely many
possible errors!

• In real quantum computers, small interactions with the environment
can cause the qubit to "drift" on the Bloch Sphere

• A partial bit flip error rotates the statevector about the x-axis

• A phase flip error rotates the statevector about the z-axis

• We want to find a way to correct both types of errors



So how do we fix an error?

• An easy classical method is called a repetition code

• Add redundancy to a bit: 0 becomes 000

• If any one bit flips, we can spot it and fix it

• To protect against two bit flips, have four bits of redundancy: 0
becomes 00000

• Exercise: how many bits of redundancy do we need to protect
against n bit flips?



Redundancy for qubits

• So we just need to add redundant qubits, right?

• Nope. There’s an important theorem called the no-cloning theorem:

Theorem
If |ψ⟩ is an arbitrary quantum state, we cannot make a copy of it. That
is, we cannot go from |ψ⟩|0⟩ → |ψ⟩|ψ⟩.

• Note: |ψ⟩|0⟩ is the tensor product of |ψ⟩ and |0⟩; we represent
multiple qubits in a system by taking their tensor product

• The no-cloning theorem rules out repetition codes entirely

• Sketch of proof: if we want to duplicate a state |ψ⟩ = α|0⟩+ β|1⟩, we
need to know α and β. But we can’t measure them!



Conclusion

• No-cloning theorem rules out basic error correction schemes

• We need something more sophisticated

• There are classical error correcting codes, that instead of using
redundancy, use parity bits

• We’ll use a similar idea, indirectly checking the qubits to make a
bit-flip code. To be covered next week!



To imagine the quantum spin of a particle, imagine a spinning ball, except it’s not a

ball and it’s not spinning.

— John Physics (1000 BC)
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