
Quantum Gates and Circuits

Parth Deshmukh, Andrey Vlasov

Outline

Quantum circuits

Quantum Gates

Specific Gates

Putting it all together

Important notes

• This is part 2 of 2 in a series on quantum error correction. Hopefully
you enjoyed the last one!

• Some advice: when learning quantum mechanics, treat it like a game
with rules to play. (Unless you’re a physicist.)

Quick recap

• We represent the states of qubits as vectors in C2 using bra-ket
notation

• We can do everything to them that we can do to vectors

• Most importantly, we can measure them: |⟨0|ψ⟩|2 tells us the
probability we get 0, and |⟨1|ψ⟩|2 the probability we get 1

Section 1

Quantum circuits

What are circuits?

• Circuits in classical computing are what EEs and CEs study

• They have wires that carry individual bits and gates that take in
those wires and modify their bits

• The language of circuits is Boolean logic

A classical circuit

Figure: X and Z are OR, Y is NOT, Z is NAND (AND then NOT)

Classical to quantum circuits

• Quantum circuits operate exactly the same way; they have wires
carrying qubits and quantum gates

• There’s one important rule to contend with: we can reverse time

• Not actually, but the laws governing quantum mechanics are the
same whether time moves forwards or backwards

• So we need the same amount of wires going out and in, and our gates
need to be reversible - in fact, they need to be unitary

A quantum circuit

Figure: We have three wires going in and out, called the quantum register, and a
classical register to collect the outcome of measurements.

Section 2

Quantum Gates

Basic Definition

• A quantum gate acts on a qubit

• In other words, a quantum gate changes the state of a qubit

• There are a few properties we want quantum gates to have

• The reason for these properties: visually, single-qubit quantum gates
are rotations on the Bloch sphere

Quantum Gate Properties

• Recall that a quantum state of a qubit is given by a superposition of
our chosen ONB

• In quantum physics, we want the total probability to always be equal
to 1

• Therefore, when the state of a qubit changes, we want the change to
be ditsributive across superpositions and normalized

• Thus every quantum gate U must be a normalized linear map

What is a linear map?

• Roughly, a function that preserves operations and linear
combinations

• Recall that a quantum state is a linear combination of our two basis
states

• U(α|0⟩+ β|1⟩) = αU(|0⟩) + βU(|1⟩)

• Normalization: |α|2 + |β|2 = 1

Why is it called U?

• Every valid quantum gate can be represented as a Unitary matrix,
and every unitary matrix is a quantum gate

• In bra-ket notation, ⟨ψ|ψ⟩ = ψ∗⊺ψ = 1 by Born’s Rule

• A unitary matrix is defined as U∗⊺U = U †UI

• ⟨Uψ| = (|Uψ⟩)† = (U |ψ⟩)† = |ψ⟩†U † = ⟨ψ|U †

• ⟨Uψ|Uψ⟩ = ⟨ψ|U †U |ψ⟩ = ⟨ψ|ψ⟩ = 1

Subsection 1

Specific Gates

The Hadamard Gate

• H|0⟩ = |+⟩, H|1⟩ = |−⟩

• Like any quantum gate, the Hadamard gate is reversible

• H|+⟩ = |0⟩, H|−⟩ = |1⟩

• Corresponds to a 180° rotation about the x+ z-axis on the Bloch
sphere

• So H2 is a 360° rotation, which is just I

Understanding the Hadamard gate

• The actual Hadamard gate is H = 1√
2

(
1 1
1 −1

)
• If we let the Hadamard gate act on a qubit |0⟩ and then measure it,

what do we get?

• The changed qubit is written as H|0⟩, and if we measure it, our
probabilities are written |⟨0|H|0⟩|2 and |⟨1|H|0⟩|2

• If we work it out, we get exactly 1/2 for both! Remember that
H|0⟩ = |+⟩, so we get |⟨0|+⟩|2 = (1√

2
)2 (and same for |⟨1|+⟩|2)

• This also works for |1⟩, so the point of the Hadamard gate is to put a
qubit exactly between |0⟩ and |1⟩ on the Bloch sphere

The Pauli-X gate

• Another useful single-qubit gate

• Represented as X =

(
0 1
1 0

)
• The Pauli-X gate is simply a 180 degree rotation about the X axis of

the Bloch sphere

• Which means it’s a bit flip: X|0⟩ = |1⟩, and X|1⟩ = |0⟩

Multiple-qubit gates

• Gates can operate on more than one qubit: for example, CNOT
operates on two gates, and CCNOT operates on three

• These are represented as 4x4 and 8x8 matrices, respectively, which
are unitaries in the wider spaces C4 and C8

• Why are we doing this? Because the input qubits to multi-qubit
quantum gates need to be combined with the tensor product, since
they could become entangled

• Example: input qubits |0⟩ and |1⟩, so the input to the CNOT gate

would be the tensor product |01⟩ =
(
1
0

)
⊗
(
0
1

)
=

0
1
0
0

The CNOT gate

• CNOT = controlled-NOT

• Flips the second qubit only if the first qubit is |1⟩, does nothing if
it’s |0⟩

• CNOT gate is defined then as CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

• First qubit is the control qubit, second qubit is the target qubit

• If we have different qubits than |0⟩ and |1⟩, the behavior is analogous
but more complex

CNOT entanglement

• CNOT gates are super useful to entangle bits together

• Since they’re the simplest gate that acts on two qubits, they’re the
simplest way to tie two qubits together - which is where the power of
quantum algorithms lie

• The simplest way of making a maximally entangled state uses a
Hadamard and CNOT to make what’s called the Bell state

Creating the Bell state

Section 3

Putting it all together

Our goal

• Recall we want to find a way to do quantum error correction

• If a qubit is at |0⟩ or |1⟩ and drifts from it, that’s a partial or
complete bit flip

• We’ll use backup qubits, CNOT and Pauli-X gates, and measurement
to indirectly force the qubit back onto |0⟩ or |1⟩ and then correct the
error

The circuit

Step 1: encoding a qubit

• We’ll use three physical qubits to encode each logical qubit

• If our starting qubit is |ψ⟩ = α|0⟩+ β|1⟩, we want to turn it into
α|000⟩+ β|111⟩

• This isn’t shown in the figure, but we can do this with two CNOT
gates:

• Note we’re not cloning our qubit, so we respect no-cloning theorem

The circuit

Step 2: measuring parities

• |q0⟩, |q1⟩, and |q2⟩ are the three qubits from our encoded qubit |ψ⟩

• The parity of two bits is 1 if they differ, and 0 if they don’t

• The parity of two bits is their XOR a⊕ b. We implement this with
CNOT, since CNOT |a⟩|b⟩ = |a⟩|a⊕ b⟩, and put it in an backup
qubit

The circuit

Step 3: measuring parities

• We measure parities twice, so our two backup (ancilla) qubits have
the parities |q0⟩ ⊕ |q1⟩ and |q1⟩ ⊕ |q2⟩

• If the parities are {0, 0}, no qubits have flipped

• If they’re {1, 0}, the left one has flipped

• If they’re {0, 1}, the right one has flipped

• If they’re {1, 1}, the middle one has flipped

• We check the parities by measuring both ancilla qubits, so we don’t
measure our original qubit

• The measurement has an additional benefit: it forces partial bit flips
to disappear or become complete bit flips

The circuit

Step 4: correcting the error

• Remember Pauli-X gates act as bit-flips

• We put a Pauli-X on each physical qubit |q0⟩, |q1⟩, |q2⟩ and just flip it
depending on what the parities tell us

• The X gates are controlled with the two ancilla qubits

• The X gate is classically the NOT gate, so this is actually the
CCNOT gate

The circuit

Phase-flip code

• To correct phase-flips, we take advantage of the Hadamard gate

• Phase-flips are errors in the ONB {|+⟩, |−⟩}, which the Hadamard
gate converts to {|0⟩, |1⟩}

• We simply convert the ONB with Hadamards, run the algorithm to
calculate bit parities, convert back, and use Pauli-Z gates to correct
the errors

The phase-flip circuit

Questions?

Nothing can create something all the time due to the laws of quantum mechanics,

and it’s - it’s fascinatingly interesting.

— LAWRENCE M. KRAUSS

Bibliography

Thomas Wong.

Introduction to classical and quantum computing.

https://www.thomaswong.net/
introduction-to-classical-and-quantum-computing-1e3p.pdf,
2022.

Accessed: 10-07-2023.

https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e3p.pdf
https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e3p.pdf

	Quantum circuits
	Quantum Gates
	Specific Gates

	Putting it all together

