[DOT $\left.{ }^{+} 23\right]$
 Doing Math with Computers for Fun and Profit

Anakin

Hi, I'm Ryan!

- Junior in CS, on a mission to take all the CS theory courses
- I also do web dev :(
- Interests: randomized and streaming algorithms, (some) systems
- Will be presenting later this semester!

Section 1

REU

What is an REU?

- Research Experience for Undergraduates
- Get paid to do research in Math, CS, Engineering, Science, etc., over the summer
- See how other schools do things, meet new people
- Maybe even get a paper out of it!

How do I find them?

Save these slides for later!

- NSF List
- Math Programs
- This spreadsheet

How do I apply to them?

- Personal Statement
- 2 Letters of Rec
- Resume / CV
- Most deadlines are early - mid March
- Start drafting in Winter Break

Tips \& Tricks

- Most are government funded which means usually US citizens get funding.
- It is possible for non-US citizens to get funding in some special cases.
- Get your letter writers to read your personal statement.
- There are other options outside of REUs (MSR, TTIC, EPFL, ETH Zürich, Max Planck, SCAMP, Independent Study, etc).
- Most people don't apply to enough REUs.

Any other questions?

Questions?

Section 2

Introduction to Group Theory

Groups and Group Actions

- A group is an object in the category of groups
- A group action is a functor from a 1-groupoid to the category of sets

What is a Group?

Groups are one of the most ubiquitous objects in all of math. They generalize structures with some sort of addition/multiplication.

Definition

A group is a set G with an operation _$\cdot{ }_{-}: G \times G \rightarrow G$ such that

- . is associative: $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
- There exists an identity e such that $g \cdot e=g=e \cdot g$
- Every element g has an inverse g^{-1} such that $g \cdot g^{-1}=e=g^{-1} \cdot g$

We will usually just write $x \cdot y$ as $x y$

Important Examples of Groups

Consider the set S_{n} of bijections $\sigma:[n] \rightarrow[n]$ where $[n]=\{1, \ldots, n\}$. This forms a group with "multiplication" using composition

- Composing bijections with each other yields a bijection
- Identity: $\operatorname{id}(i)=i$ for all $1 \leq i \leq n$
- Inverses: σ has an inverse σ such that $\sigma \circ \sigma^{-1}=\mathrm{id}$

Important Examples of Groups

Recall that the integers $\bmod p$ are $\mathbb{Z}_{p}=\{1,2, \ldots, p\}$ with addition and multiplication done modulo p. Consider the set GL (n, p) of all $n \times n$ matrices with entries in \mathbb{Z}_{p} with non-zero determinant. This forms a group with matrix multiplication

- Multiplying two matrices with non-zero determinant yields a matrix with non-zero determinant since $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$
- Identity: I_{n} with 1 s on the diagonal and 0 s elsewhere
- Inverses: Matrices have an inverse if and only if they have non-zero determinant, so each A has an inverse A^{-1} such that $A \times A^{-1}=I_{n}$

If you've taken Linear Algebra, these are just invertible linear transformations!

Group Isomorphism

Consider the following two groups:

$$
\begin{aligned}
& G=\left\{\mathrm{id}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \sigma^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\right\} \subseteq S_{3} \\
& \mathbb{Z}_{3}=\{
\end{aligned}
$$

So G are some permutations with the operation of composition and \mathbb{Z}_{3} are integers modulo 3 where the operation is addition but we keep the remainder after division by 3 . So $2+2 \equiv 1(\bmod 3)$.

Question: In what sense are these two groups the same group?
Answer: Mapping id $\mapsto 0, \sigma \mapsto 1, \sigma^{2} \mapsto 2$ preserve operations!
Notice that $\sigma \circ \sigma=\sigma^{2}$ and $1+1 \equiv 2(\bmod 3)$.
Similarly, $\sigma \circ \sigma \circ \sigma=\mathrm{id}$ and $1+1+1 \equiv 0(\bmod 3)$.

Group Actions

We want to study how a group G interacts with other sets. Let Ω be some set.

Definition

Then a group action is an operation _${ }^{-}: G \times \Omega \rightarrow \Omega$ such that

- $e \cdot x=x$, for all $x \in \Omega$
- $g \cdot(h \cdot x)=(g h) \cdot x$, for all $g, h \in G$, and for all $x \in \Omega$

We write $G \curvearrowright \Omega$.
To prevent confusion with the group operation in G, we will keep the \cdot when talking about actions.

Important Examples of Group Actions

Let $G=S_{n}$ and $\Omega=[n]$.

- Say $\sigma:[n] \rightarrow[n] \in S_{n}$ and $i \in[n]$. What would be a good choice of action $\sigma \cdot i$?
- $\sigma \cdot i:=\sigma(i)$

Now let G be a group of invertible linear transformations from a vector space $V \rightarrow V$.

- Say $T: V \rightarrow V \in G$ and $v \in V$. What would be a good choice of action $T \cdot v$?
- $T \cdot v:=T(v)$

Orbits and Stabilizers

We want to study the structure of $G \curvearrowright \Omega$.

Definition

The orbit of $\alpha \in \Omega$ is the set $G \cdot \alpha=\{g \cdot \alpha \mid g \in G\}$
Every element of Ω belongs in some orbit. It turns out the orbits partition Ω.

Definition

The stabilizer of $\alpha \in \Omega$ is the set $G_{\alpha}=\{g \in G \mid g \cdot \alpha=\alpha\}$
Exercise: Stabilizers are subgroups of G

Example

$G=\left\{\mathrm{id}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right), \sigma=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right), \sigma^{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right)\right\} \subseteq S_{4}$
This is the same group as before, but now 4 is a valid input and we don't do anything to it. Exercise: Check that this is a subgroup of S_{4}.

Consider $G \curvearrowright[4]$.

- $G \cdot 1=\{1,2,3\}$
- $G \cdot 4=\{4\}$
- $G_{1}=\{\mathrm{id}\}$
- $G_{4}=G$

Group Classification

The Group Classification Problem is the problem of identifying groups satisfying some property "up to" isomorphism.

- This is one of the hardest problems in all of group theory.
- Even checking if two finite groups are isomorphic is difficult for computer.
- The classification of the finite simple groups took tens of thousands of pages written by over 100 authors between 1955 and 2004 .

Rank

- Let G be some group of permutations in S_{n} and consider $G \curvearrowright[n]$ such that G only has one orbit.
- Let G_{0} be the stabilizer of some element of [n]. It turns out it doesn't matter which one.

Definition

The rank of G is the number of orbits of $G_{0} \curvearrowright[n]$.
This is a sort of measurement of the "reach" of stabilizer subgroups of G.

Section 3

Groups, Algorithms, and Programming

Structure

- Let G be some group of permutations in S_{n} and consider $G \curvearrowright[n]$ such that G only has one orbit.
- Let G_{0} be the stabilizer of some element of Ω.
- Result 1: This is the same as considering $G_{0} \curvearrowright V$ where G_{0} is now a group of linear transformations and V is a vector space \mathbb{F}_{p}^{k}.
- \# Orbits of $G_{0} \curvearrowright[n]=\#$ Orbits of $G_{0} \curvearrowright \mathbb{F}_{p}^{k}$.
- Result 2: G_{0} must contain a certain subgroup E of order $q^{2 m+1}$.

Making Change using Group Theory

So now we can consider $G_{0} \curvearrowright \mathbb{F}_{p}^{k}$ and $E \subseteq G_{0}$ where $|E|=q^{2 m+1}$. This gives us a nice set of parameters.

1. We find a value $B(p, k, q, m)$ such that $\left|G_{0}\right|$ divides B
2. A theorem in group theory tells us that the size of orbits of G_{0} divides $\left|G_{0}\right|$, so they divide B

- Let d_{1}, \ldots, d_{t} be the divisors of B

3. We know there is one orbit of size 1 and the sizes of the other orbits must sum up to $p^{k}-1$

Result 3: We can get a lower bound on rank by solving the Change Making Problem with coins d_{1}, \ldots, d_{t} and target value $p^{k}-1$.

Making Change using Group Theory

In the Change-making Problem, we are given coins from some set of denominations d_{1}, \ldots, d_{t} and a target value T, we want to "make change" for T using as few coins as possible

- We have a fixed set of possible sizes of orbits and a target value $p^{k}-1$
- We know the orbits partition this target value
- A worst case lower bound is the most efficient packing as possible
- Thus we want to solve the Change Making Problem with coins d_{1}, \ldots, d_{t} and target value $p^{k}-1$.

Inductively Making Change

Let coins $=\left[d_{1}, \ldots, d_{n}\right]$ be a sorted list of denominations of coins. Let NumCoins (i, c) be the smallest possible number coins of denomination $\left[d_{1}, \ldots, d_{c}\right]$ needed make change for i

- If coins $=[1,3,5,7]$ then $\operatorname{NumCoins}(10,1)=10$ but $\operatorname{NumCoins}(10,4)=2$

Inductively Making Change

Let coins $=\left[d_{1}, \ldots, d_{n}\right]$ be a sorted list of denominations of coins. Let NumCoins (i, c) be the smallest possible number coins of denomination $\left[d_{1}, \ldots, d_{c}\right]$ needed make change for i.
$\operatorname{NumCoins}(i, c)=$

$$
\begin{cases}\infty & c=0 \\ \operatorname{NumCoins}(i, c-1) & i<\operatorname{coins}[c] \\ 1 & i=\operatorname{coins}[c] \\ \min \{\operatorname{NumCoins}(i, c-1), 1+\operatorname{NumCoins}(i-\operatorname{coins}[c], c)\} & \text { otherwise }\end{cases}
$$

A (very high level) Overview of the Whole Paper

1. Define the parameters p, k, q, m
2. Do a bunch of pure math to get finite bounds on these parameters
3. Enumerate all possible sets of parameters and keep the ones that have a lower bound ≤ 6

A (very high level) Overview of the Whole Paper

For each set of valid parameters p, k, q, m. Let $N=$ the largest possible N such that $N \curvearrowright \mathbb{F}_{p}^{k}$

1. Check if the subgroup E with $|E|=q^{2 m+1}$ is contained in N (HARD!)
2. Check if N has rank ≤ 6
3. Enumerate all possible subgroups of N (HARD!)
4. Repeat for each subgroup

How?

- All of this was done in a programming language called GAP: Groups, Algorithms, and Programming
- GAP is just one of many computational algebra systems
- SageMath (Built on top of Python
- Mathmatica
- Magma (popular in Cryptography)
- Macauley2 (Created at UIUC!)
- Hard computations were done on AWS.
- These techniques extend to higher ranks but computational resources are a large issue.

More Details?

- Check out the paper (linked on my website anakin-dey.com)
- Come to the Undergraduate Math Seminar (details coming soon)
- Ask me in the Discord!

Questions?

Algebra is the offer made by the devil to the mathematician...All you need to do, is give me your soul: give up geometry

- Michael Atiyah (1979)

Bibliography

目 Anakin Dey, Kolton O'Neal, Duc Van Khanh Tran, Camron Upshur, and Yong Yang.

Classifying primitive solvable permutation groups of rank 5 and 6 , 2023.

