[Zec72, FK96] Welcome to SIGma

SIGma

Section 1

Officers in No Particular Order

Anakin

- Math Major
- Did Computational Group Theory at an REU
- Graph Theory / Optimization Research during the year
- SIGPwny Crypto¹ Gang + Admin team
- Coffee Club
- CA for CS 173 + CS 374

¹Not that one, the other one

Aditya

- ECE/Math double major.
- Interned at a satellite internet startup over the summer.
- CA for ECE 411, ECE 391 + SIGARCH co-lead.
- Other interests: FP, EE, Crypto(graphy).

Sam

- CS PhD
- Doing Computational Geometry with Sariel Har-Peled
- SIGPwny

Hassam

- Intern at IMC Trading over the summer
- CS Major (takes math classes for fun ???)
- SIGPwny Crypto Gang + Admin team + Infra lead
- CA for CS 341, CS 173
- Compiler research

We Need Officers!

- This list is smaller than last year
- Reach out to me if you are interested in improving SIGma and making meetings!

Section 2

Fibonacci Codes

But Why?

- Almost everything you do online involves sending and receiving messages
- How can we make these messages "robust" to errors?

Starting From The End

- Suppose we want to uniquely assign the natural numbers a *codeword*
- We want this *code* to have a couple properties
 - Quick to compute
 - ► Variable length
 - Robust to errors
- It turns out *Fibonacci Numbers* do all this for us

Our Favorite Sequence

$$F_n = \begin{cases} 0 & n = 0\\ 1 & n = 1\\ F_{n-1} + F_{n-2} & n \ge 2 \end{cases}$$

F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}
0	1	1	2	3	5	8	13	21	34	55	89	144	233

Zeckendorf's Theorem

Theorem ($[{\rm Zec}72])$

Every natural number $n \ge 1$ can be represented as a unique sum of non-consecutive Fibonacci numbers F_i where $i \ge 2$. If we allow F_0 and F_1 we lose uniqueness We call this sum a Zeckendorf sum.

•
$$4 = F_4 + F_2 = 3 + 1$$

•
$$64 = F_{10} + F_6 + F_2 = 55 + 8 + 1$$

Recursion is Induction is Recursion is Induction is ...

We prove existence by *induction* on our natural number n. Suppose that for all natural numbers strictly smaller than n, such a Zeckendorf sum exists. There are two cases.

If $n \leq 4$:

$$1 = F_2 2 = F_3 3 = F_4 4 = F_4 + F_2$$

If n > 4 itself is a Fibonacci number, we are done.

Recursion is Induction is Recursion is Induction is ...

If n > 4 is not a Fibonacci number:

- Since n > 4, it is strictly between two consecutive Fibonacci numbers $F_i < n < F_{i+1}$ for some $i \ge 3$
- $n F_i < n$ so, by *induction*, $n F_i$ has some Zeckendorf sum

• Note that

$$n - F_i + F_i = n < F_{i+1} = F_{i-1} + F_i$$
$$\implies n - F_i < F_{i-1}$$

and thus the Zeckendorf sum of $n - F_i$ does not contain F_{i-1}

• Combine the Zeckendorf sum of $n - F_i$ with F_i to obtain a Zeckendorf sum for n

The statement and proof of the theorem helps design a greedy algorithm

- The inductive proof implies we should find the largest $F_i \leq n$
- The statement implies that if we picked F_i , we should skip F_{i-1}
- Our goal is to encode text, so we can precompute an array of Fibonacci numbers ahead of time up to some maximum

```
1: maximum \leftarrow 1114111 (( largest Unicode value U+10FFFF ))

2: F \leftarrow [0, 1]

3: i \leftarrow 2

4: while F[i - 1] \leq maximum:

5: F.append(F[i - 2] + F[i - 1])

6: i += 1
```


$$\begin{array}{c|c} & \mathbf{ZECKENDORF}(x):\\ 1: & i \leftarrow \max i \text{ such that } \mathbf{F}[i] \leq x\\ 2: & rep \leftarrow ```\\ 3: & rem \leftarrow x\\ 4: & \text{while } i \geq 2:\\ 5: & \text{if } \mathbf{F}[i] \leq rem:\\ 6: & rem -= \mathbf{F}[i]\\ 7: & rep += 1\\ 8: & \text{if } rem > 0:\\ 9: & rep +=)\\ 10: & i -= 1\\ 11: & \text{else:}\\ 12: & rep += 0\\ 13: & i -= 1\\ 14: & \text{return } rep \end{array}$$

Zeckendorf(x):

1:
$$i \leftarrow \max i \text{ such that } \mathbf{F}[i] \le i$$

$$2: rep \leftarrow ""$$

3:
$$rem \leftarrow x$$

4: while
$$i \geq 2$$
:

5: if
$$F[i] \le rem$$
:
6: $rem -= F$

6:
$$rem = F[i]$$

7: $rep += 1$

if
$$rem > 0$$
:

9:
$$rep += 1$$

10: $i -= 1$

8:

$$12: \qquad rep += 0$$

$$\begin{array}{ccc} 13: & i & -= 1 \\ 14: & \operatorname{roturn} & ren \end{array}$$

of *i* such that
$$F_i \le x$$

= $\left\lfloor \log_{\phi} \left(x\sqrt{5} \right) \right\rfloor = O(\log x)$

- The while loop does $i = O(\log x)$ iterations
- The work inside the while loop takes O(1) time
- So **ZECKENDORF** takes
- Each iteration we add at most 2 $|\mathbf{ZECKENDORF}(x)| = O(\log x)$

Zeckendorf(x):

- 1: $i \leftarrow \max i \text{ such that } \mathbf{F}[i] \leq i$ $rep \leftarrow ""$ 2: 3: rem $\leftarrow x$ 4: while $i \geq 2$: 5: if $F[i] \leq rem$: 6: rem = F[i]7: rep += 1if rem > 0: 8: 9: rep += 0i = 110:11: else: 12: rep += 013: i = 114: return *rep*
 - # of *i* such that $F_i \le x$ = $\left\lfloor \log_{\phi} \left(x\sqrt{5} \right) \right\rfloor = O(\log x)$
 - The while loop does $i = O(\log x)$ iterations
 - The work inside the while loop takes O(1) time
 - So **ZECKENDORF** takes $O(\log x)$ time
 - Each iteration we add at most 2 characters \implies $|\mathbf{ZECKENDORF}(x)| = O(\log x)$

Zeckendorf(x):

1:
$$i \leftarrow \max i \text{ such that } F[i] \le 2$$
: $rep \leftarrow "$ "
3: $rem \leftarrow x$
4: while $i \ge 2$:
5: $\text{if } F[i] \le rem$:
6: $rem -= F[i]$
7: $rep += 1$
8: $\text{if } rem > 0$:
9: $rep += 1$
10: $i -= 1$
11: else:
12: $rep += 0$
13: $i -= 1$
14: return rep

of *i* such that
$$F_i \le x$$

= $\left| \log_{\phi} \left(x\sqrt{5} \right) \right| = O(\log x)$

- The while loop does $i = O(\log x)$ iterations
- The work inside the while loop takes O(1) time
- So **ZECKENDORF** takes $O(\log x)$ time
- Each iteration we add at most 2 characters ⇒
 |ZECKENDORF(x)| = O(log x)

Zeckendorf(x):

1:
$$i \leftarrow \max i \text{ such that } F[i] \le i$$

2: $rep \leftarrow "$ "
3: $rem \leftarrow x$
4: while $i \ge 2$:
5: if $F[i] \le rem$:
6: $rem -= F[i]$
7: $rep += 1$
8: if $rem > 0$:
9: $rep += 1$
10: $i -= 1$
11: else:
12: $rep += 0$
13: $i -= 1$
14: return rep

of *i* such that
$$F_i \le x$$

= $\left\lfloor \log_{\phi} \left(x\sqrt{5} \right) \right\rfloor = O(\log x)$

- The while loop does $i = O(\log x)$ iterations
- The work inside the while loop takes O(1) time
- So **ZECKENDORF** takes $O(\log x)$ time
- Each iteration we add at most 2 characters \implies $|\mathbf{ZECKENDORF}(x)| = O(\log x)$

Undo

1: $\frac{\mathbf{FRODNEKCEZ}(rep[0..n]):}{res \leftarrow 0}$ 2: for $i \leftarrow 0..n$: 3: if rep[i] = 1: 4: $res += \mathbf{F}[i+2]$ ((Remember we don't use F_0 or F_1)) 5: return res

Runtime analysis:

- Work is constant for each iteration of the for loop $\implies O(n)$
- If $rep[0..n] = \mathbf{Zeckendorf}(x)$ then $O(n) = O(\log x)$

A Fibonacci Code

We now show how to assign natural numbers a code word using the Zeckendorf Decomposition [FK96]

• The length of the Zeckendorf Representation for numbers can vary

Zeckendorf(2) = 01, **Zeckendorf**(7) = 0101

• We want to be able to send this bit strings and tell when a character begins and ends

 \blacktriangleright Does 0101 correspond to [2, 2] or [7]?

• Solution: Add a "comma" using an extra 1

• ENC([2,2]) = 011011, ENC([7]) = 01011

Heavy Lifting Has Already Been Done

ENC(x):

1: return **ZECKENDORF**(x) + 1 ($\langle add \ comma \ \rangle \rangle$

$$\mathbf{DEC}(rep[0..n])$$
:

1: return **FRODNEKCEZ**(
$$rep[0..n-1]$$
) $\langle \langle remove \ comma \rangle \rangle$

Runtime analysis:

• Same as **Zeckendorf** and **Frodnekcez**

Heavy Lifting Has Already Been Done

 $1: \frac{\mathbf{ENCODE}(m[0..n]):}{code \leftarrow ""}$ $2: \text{ for } i \leftarrow 0..n:$ $3: val \leftarrow ORD(m[i])$ $4: code += \mathbf{ENC}(val)$ 5: return code

Runtime analysis:

- To simplify our life, since ORD(m[i]) is some Unicode value which has a set maximum, **ENC** runs in constant time
 - More precise analysis would require knowledge of the distribution of characters in whatever language being used. Ask your nearest linguist.
- Thus, ENCODE(m[0..n]) runs in O(n) time

Heavy Lifting Has Already Been Done

$$\begin{array}{l} \displaystyle \underbrace{\mathbf{DECODE}(code[0..n]):}{m \leftarrow ```}\\ \hline m \leftarrow ```'\\ i \leftarrow 0\\ \text{while } i \leq n:\\ j \leftarrow \text{smallest } j > i \text{ such that}\\ code[j] = code[j+1] = 1\\ rep = code[i..j+1]\\ x \leftarrow \mathbf{DEC}(rep)\\ m += \text{CHR}(x)\\ i \leftarrow j+2\\ \text{return } m \end{array}$$

Runtime analysis:

• By similar logic, DECODE(code[0..n]) runs in O(n) time

An Example

S	I	G	m	a
83	73	71	109	97
0101001011	0001010011	0010010011	01010100011	00001000011

Containment of Errors

Claim: When a single error occurs, at most 3 codewords are lost

- We know that ENC(x) ends with 011 for all x > 1
- For such x, if an error occurs outside of these last 3 bits, only one codeword is lost:
 - If a 01 gets turned into a 11, if a 0 is deleted, or if a 1 is inserted in some specific spot, then one codeword may turn into two
 - ▶ Consider 0101011 ~> 0111011 / 011011 / 01101011
 - Otherwise, we just misconvert that single codeword

Questions?

Abstract is a word people use when they haven't gotten used to something

— EUGENE LERMAN (8/28/2023)

Question: Containment of Errors

Claim: When a single error occurs, at most 3 codewords are lost

- We know that ENC(x) ends with 011 for all x > 1
- For such x, if an error occurs outside of these last 3 bits, only one codeword is lost:
 - If a 01 gets turned into a 11, if a 0 is deleted, or if a 1 is inserted in some specific spot, then one codeword may turn into two
 - ► Consider 0101011 ~→ 0111011 / 011011 / 01101011
 - Otherwise, we just misconvert that single codeword

Exercise: Consider what may happen in the cases of insertion, deletion, and bitflipping for each of the last three bits of ENC(x) for x > 1

Bibliography

Aviezri S. Fraenkel and Shmuel T. Kleinb.

Robust universal complete codes for transmission and compression.

Discrete Applied Mathematics, 64(1):31–55, January 1996.

E. Zeckendorf.

Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.

Bull. Soc. R. Sci. Liège, 41:179–182, 1972.

