[Zec72,FK96]
Welcome to SIGma
SIGma

Section 1

Officers in No Particular Order

Anakin

- Math Major
- Did Computational Group Theory at an REU
- Graph Theory / Optimization Research during the year
- SIGPwny Crypto ${ }^{1}$ Gang + Admin team
- Coffee Club
- CA for CS $173+$ CS 374

[^0]
Aditya

- ECE/Math double major.
- Interned at a satellite internet startup over the summer.
- CA for ECE 411, ECE 391 + SIGARCH co-lead.
- Other interests: FP, EE, Crypto(graphy).

Sam

- CS PhD
- Doing Computational Geometry with Sariel Har-Peled
- SIGPwny

Hassam

- Intern at IMC Trading over the summer
- CS Major (takes math classes for fun ???)
- SIGPwny Crypto Gang + Admin team + Infra lead
- CA for CS 341, CS 173
- Compiler research

We Need Officers!

- This list is smaller than last year
- Reach out to me if you are interested in improving SIGma and making meetings!

Section 2
Fibonacci Codes

But Why?

- Almost everything you do online involves sending and receiving messages
- How can we make these messages "robust" to errors?

Starting From The End

- Suppose we want to uniquely assign the natural numbers a codeword
- We want this code to have a couple properties
- Quick to compute
- Variable length
- Robust to errors
- It turns out Fibonacci Numbers do all this for us

Our Favorite Sequence

$$
F_{n}= \begin{cases}0 & n=0 \\ 1 & n=1 \\ F_{n-1}+F_{n-2} & n \geq 2\end{cases}
$$

F_{0}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}	F_{11}	F_{12}	F_{13}
0	1	1	2	3	5	8	13	21	34	55	89	144	233

Zeckendorf's Theorem

Theorem ([Zec72])

Every natural number $n \geq 1$ can be represented as a unique sum of non-consecutive Fibonacci numbers F_{i} where $i \geq 2$. If we allow F_{0} and F_{1} we lose uniqueness
We call this sum a Zeckendorf sum.

- $4=F_{4}+F_{2}=3+1$
- $64=F_{10}+F_{6}+F_{2}=55+8+1$

Recursion is Induction is Recursion is Induction is

We prove existence by induction on our natural number n. Suppose that for all natural numbers strictly smaller than n, such a Zeckendorf sum exists. There are two cases.

If $n \leq 4$:

$$
\begin{array}{ll}
1=F_{2} & 2=F_{3} \\
3=F_{4} & 4=F_{4}+F_{2}
\end{array}
$$

If $n>4$ itself is a Fibonacci number, we are done.

Recursion is Induction is Recursion is Induction is ...

If $n>4$ is not a Fibonacci number:

- Since $n>4$, it is strictly between two consecutive Fibonacci numbers $F_{i}<n<F_{i+1}$ for some $i \geq 3$
- $n-F_{i}<n$ so, by induction, $n-F_{i}$ has some Zeckendorf sum
- Note that

$$
\begin{aligned}
& n-F_{i}+F_{i}=n<F_{i+1}=F_{i-1}+F_{i} \\
\Longrightarrow & n-F_{i}<F_{i-1}
\end{aligned}
$$

and thus the Zeckendorf sum of $n-F_{i}$ does not contain F_{i-1}

- Combine the Zeckendorf sum of $n-F_{i}$ with F_{i} to obtain a Zeckendorf sum for n

Deadly Sins \Longrightarrow Fast Algorithms

The statement and proof of the theorem helps design a greedy algorithm

- The inductive proof implies we should find the largest $F_{i} \leq n$
- The statement implies that if we picked F_{i}, we should skip F_{i-1}
- Our goal is to encode text, so we can precompute an array of Fibonacci numbers ahead of time up to some maximum

```
1: maximum \leftarrow1114111 << largest Unicode value U+10FFFF 》
    2: F}\leftarrow[0,1
    3: i}\leftarrow
    4: while }\textrm{F}[i-1]\leq\mathrm{ maximum:
    5: F}\quad\textrm{F}.\operatorname{append(F[i-2] + F[i-1])
    6: }\quadi+=
```


Deadly Sins \Longrightarrow Fast Algorithms

```
ZECKENDORF \((x)\) :
1: \(\quad i \leftarrow \max i\) such that \(\mathrm{F}[i] \leq x\)
2: \(\quad\) rep \(\leftarrow " "\)
3: \(\quad\) rem \(\leftarrow x\)
4: \(\quad\) while \(i \geq 2\) :
5: \(\quad\) if \(\mathrm{F}[i] \leq\) rem :
                    rem \(-=\mathrm{F}[i]\)
                    rep \(+=1\)
                    if rem \(>0\) :
                \(r e p+=\) )
                \(i-=1\)
11: else:
12: \(\quad\) rep \(+=0\)
13: \(\quad i-=1\)
14: return rep
```


Deadly Sins \Longrightarrow Fast Algorithms

```
ZECKENDORF(x):
1: i\leftarrow max i such that F}\textrm{F}[i]\leq
2:
3: rem}\leftarrow
4: while }i\geq2\mathrm{ :
5: if F[i] \leqrem:
6: rem-= F[i]
        rep += 1
        if rem>0:
9: rep +=1
10:
11: else:
12:. rep +=0
13: }\quadi-=
14: return rep
```

$\#$ of i such that $F_{i} \leq x$
$=\left\lfloor\log _{\phi}(x \sqrt{5})\right\rfloor=O(\log x)$

- The while loop does
$i=O(\log x)$ iterations
- The work inside the while loop takes $O(1)$ time
- So Zeckendorf takes $O(\log x)$ time
- Each iteration we add at most 2 characters \Longrightarrow \mid Zeckendorf $(x) \mid=O(\log x)$

Deadly Sins \Longrightarrow Fast Algorithms

```
ZECKENDORF(x):
1: i\leftarrowmax i such that }\textrm{F}[i]\leq
2:
3: rem}\leftarrow
4: while }i\geq2\mathrm{ :
5: if F}[i]\leqrem
6: rem-= F[i]
7: rep +=1
8: if rem>0 :
9:
10:
                rep +=0
                i-=1
11: else:
12:. rep +=0
13: }i-=
14: return rep
```

$$
\begin{gathered}
\# \text { of } i \text { such that } F_{i} \leq x \\
= \\
\left\lfloor\log _{\phi}(x \sqrt{5})\right\rfloor=O(\log x)
\end{gathered}
$$

- The while loop does
$i=O(\log x)$ iterations
- The work inside the while loop takes $O(1)$ time
- So Zeckendorf takes $O(\log x)$ time
- Each iteration we add at most 2 characters \Longrightarrow \mid Zeckendorf $(x) \mid=O(\log x)$

Deadly Sins \Longrightarrow Fast Algorithms

```
Zeckendorf(x):
1: i\leftarrow max i such that }\textrm{F}[i]\leq
2
3: rem}\leftarrow
4: while }i\geq2\mathrm{ :
5: if F[i]\leqrem:
6: rem-= F[i]
7: rep +=1
8:
        if rem>0:
                rep +=1
                i-=1
10:
11: else:
12:. rep +=0
13: }\quadi-=
14: return rep
```

$$
\begin{gathered}
\# \text { of } i \text { such that } F_{i} \leq x \\
=\left\lfloor\log _{\phi}(x \sqrt{5})\right\rfloor=O(\log x)
\end{gathered}
$$

- The while loop does $i=O(\log x)$ iterations
- The work inside the while loop takes $O(1)$ time
- So Zeckendorf takes $O(\log x)$ time
- Each iteration we add at most 2 characters \Longrightarrow \mid Zeckendorf $(x) \mid=O(\log x)$

Deadly Sins \Longrightarrow Fast Algorithms

```
ZECKENDORF( \(x\) ):
1: \(i \leftarrow \max i\) such that \(\mathrm{F}[i] \leq i\)
2: \(\quad r e p \leftarrow\)
        "
3: \(\quad\) rem \(\leftarrow x\)
4: while \(i \geq 2\) :
5: if \(\mathrm{F}[i] \leq r e m\) :
6: rem \(-=\mathrm{F}[i]\)
7: rep \(+=1\)
8: \(\quad\) if rem \(>0\) :
9: \(\quad r e p+=1\)
10:
                \(i-=1\)
11: else:
12: \(r e p+=0\)
13: \(\quad i-=1\)
14: return rep
```

$$
\begin{gathered}
\# \text { of } i \text { such that } F_{i} \leq x \\
=\left\lfloor\log _{\phi}(x \sqrt{5})\right\rfloor=O(\log x)
\end{gathered}
$$

- The while loop does $i=O(\log x)$ iterations
- The work inside the while loop takes $O(1)$ time
- So Zeckendorf takes $O(\log x)$ time
- Each iteration we add at most 2 characters \Longrightarrow
$|\operatorname{Zeckendorf}(x)|=O(\log x)$

Undo

$$
\begin{array}{ll}
\text { 1: } & \text { FRODNEKCEZ }(\operatorname{rep}[0 . . n]): \\
\text { 1: } & \text { res } \leftarrow 0 \\
\text { 2: } & \text { for } i \leftarrow 0 . . n: \\
\text { 3: } & \text { if } r e p[i]=1: \\
\text { 4: } & \text { res }+=\mathrm{F}[i+2] \quad \text { } \\
\text { 5: } & \text { return res }
\end{array}
$$

Runtime analysis:

- Work is constant for each iteration of the for loop $\Longrightarrow O(n)$
- If $\operatorname{rep}[0 . . n]=\operatorname{Zeckendorf}(x)$ then $O(n)=O(\log x)$

A Fibonacci Code

We now show how to assign natural numbers a code word using the Zeckendorf Decomposition [FK96]

- The length of the Zeckendorf Representation for numbers can vary
- Zeckendorf(2) = 01, Zeckendorf(7) = 0101
- We want to be able to send this bit strings and tell when a character begins and ends
- Does 0101 correspond to [2, 2] or [7]?
- Solution: Add a "comma" using an extra 1
- $\operatorname{ENC}([2,2])=011011, \boldsymbol{\operatorname { E N C }}([7])=01011$

Heavy Lifting Has Already Been Done

```
            ENC(x):
1: return ZEckendorf(x)+1 \< add comma \\rangle
```

```
    DEC(rep[0..n]):
1: return FrodNEKCEZ (rep[0..n - 1]) << remove comma \\rangle
```

Runtime analysis:

- Same as Zeckendorf and Frodnekcez

Heavy Lifting Has Already Been Done

$$
\begin{aligned}
& \frac{\text { ENCODE }(m[0 . . n]):}{\text { code } \leftarrow "} \\
& \text { for } i \leftarrow 0 . . n: \\
& \text { val } \leftarrow \operatorname{ORD}(m[i]) \\
& \text { code }+=\operatorname{ENC}(\text { val }) \\
& \text { return code }
\end{aligned}
$$

Runtime analysis:

- To simplify our life, since $\operatorname{ORD}(m[i])$ is some Unicode value which has a set maximum, ENC runs in constant time
- More precise analysis would require knowledge of the distribution of characters in whatever language being used. Ask your nearest linguist.
- Thus, $\operatorname{ENCODE}(m[0 . . n])$ runs in $O(n)$ time

Heavy Lifting Has Already Been Done

$$
\begin{aligned}
& \frac{\text { DECODE }(\operatorname{code}[0 . . n]):}{m \leftarrow " "} \\
& i \leftarrow 0 \\
& \text { while } i \leq n: \\
& j \leftarrow \text { smallest } j>i \text { such that } \\
& \operatorname{code}[j]=\operatorname{code}[j+1]=1 \\
& \quad r e p=\operatorname{code}[i . . j+1] \\
& x \leftarrow \operatorname{DEC}(r e p) \\
& m+=\operatorname{CHR}(x) \\
& i \leftarrow j+2 \\
& \text { return } m
\end{aligned}
$$

Runtime analysis:

- By similar logic, DECODE(code[0..n]) runs in $O(n)$ time

An Example

S	I	G	m	a
83	73	71	109	97
0101001011	0001010011	0010010011	01010100011	00001000011

Containment of Errors

Claim: When a single error occurs, at most 3 codewords are lost

- We know that $\operatorname{ENC}(x)$ ends with 011 for all $x>1$
- For such x, if an error occurs outside of these last 3 bits, only one codeword is lost:
- If a 01 gets turned into a 11 , if a 0 is deleted, or if a 1 is inserted in some specific spot, then one codeword may turn into two
- Consider $0101011 \sim 0111011$ / 011011 / 01101011
- Otherwise, we just misconvert that single codeword

Questions?

Abstract is a word people use when they haven't gotten used to something - EUGENE LERMAN (8/28/2023)

Question: Containment of Errors

Claim: When a single error occurs, at most 3 codewords are lost

- We know that $\operatorname{ENC}(x)$ ends with 011 for all $x>1$
- For such x, if an error occurs outside of these last 3 bits, only one codeword is lost:
- If a 01 gets turned into a 11 , if a 0 is deleted, or if a 1 is inserted in some specific spot, then one codeword may turn into two
- Consider $0101011 \sim 0111011$ / 011011 / 01101011
- Otherwise, we just misconvert that single codeword

Exercise: Consider what may happen in the cases of insertion, deletion, and bitflipping for each of the last three bits of $\operatorname{ENC}(x)$ for $x>1$

Bibliography

© Aviezri S. Fraenkel and Shmuel T. Kleinb.
Robust universal complete codes for transmission and compression.
Discrete Applied Mathematics, 64(1):31-55, January 1996.
囯 E. Zeckendorf.
Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.

Bull. Soc. R. Sci. Liège, 41:179-182, 1972.

[^0]: ${ }^{1}$ Not that one, the other one

