
[Zec72,FK96]

Welcome to SIGma

SIGma

Section 1

Officers in No Particular Order

Anakin

• Math Major

• Did Computational Group Theory at an REU

• Graph Theory / Optimization Research during the year

• SIGPwny Crypto1 Gang + Admin team

• Coffee Club

• CA for CS 173 + CS 374

1Not that one, the other one

Aditya

• ECE/Math double major.

• Interned at a satellite internet startup over the summer.

• CA for ECE 411, ECE 391 + SIGARCH co-lead.

• Other interests: FP, EE, Crypto(graphy).

Sam

• CS PhD

• Doing Computational Geometry with Sariel Har-Peled

• SIGPwny

Hassam

• Intern at IMC Trading over the summer

• CS Major (takes math classes for fun ???)

• SIGPwny Crypto Gang + Admin team + Infra lead

• CA for CS 341, CS 173

• Compiler research

We Need Officers!

• This list is smaller than last year

• Reach out to me if you are interested in improving SIGma and
making meetings!

Section 2

Fibonacci Codes

But Why?

• Almost everything you do online involves sending and receiving
messages

• How can we make these messages “robust” to errors?

Starting From The End

• Suppose we want to uniquely assign the natural numbers a codeword

• We want this code to have a couple properties

▶ Quick to compute

▶ Variable length

▶ Robust to errors

• It turns out Fibonacci Numbers do all this for us

Our Favorite Sequence

Fn =


0 n = 0

1 n = 1

Fn−1 + Fn−2 n ≥ 2

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

0 1 1 2 3 5 8 13 21 34 55 89 144 233

Zeckendorf’s Theorem

Theorem ([Zec72])
Every natural number n ≥ 1 can be represented as a unique sum of
non-consecutive Fibonacci numbers Fi where i ≥ 2. If we allow F0 and F1

we lose uniqueness
We call this sum a Zeckendorf sum.

• 4 = F4 + F2 = 3 + 1

• 64 = F10 + F6 + F2 = 55 + 8 + 1

Recursion is Induction is Recursion is Induction is . . .

We prove existence by induction on our natural number n. Suppose that
for all natural numbers strictly smaller than n, such a Zeckendorf sum
exists. There are two cases.

If n ≤ 4:

1 = F2 2 = F3

3 = F4 4 = F4 + F2

If n > 4 itself is a Fibonacci number, we are done.

Recursion is Induction is Recursion is Induction is . . .

If n > 4 is not a Fibonacci number:

• Since n > 4, it is strictly between two consecutive Fibonacci numbers
Fi < n < Fi+1 for some i ≥ 3

• n− Fi < n so, by induction, n− Fi has some Zeckendorf sum

• Note that

n− Fi + Fi = n < Fi+1 = Fi−1 + Fi

=⇒ n− Fi < Fi−1

and thus the Zeckendorf sum of n− Fi does not contain Fi−1

• Combine the Zeckendorf sum of n− Fi with Fi to obtain a
Zeckendorf sum for n

Deadly Sins =⇒ Fast Algorithms

The statement and proof of the theorem helps design a greedy algorithm

• The inductive proof implies we should find the largest Fi ≤ n

• The statement implies that if we picked Fi, we should skip Fi−1

• Our goal is to encode text, so we can precompute an array of
Fibonacci numbers ahead of time up to some maximum

1: maximum ← 1114111 ⟨⟨ largest Unicode value U+10FFFF ⟩⟩
2: F ← [0, 1]
3: i← 2
4: while F[i− 1] ≤ maximum:
5: F.append(F[i− 2] + F[i− 1])
6: i += 1

Deadly Sins =⇒ Fast Algorithms
Zeckendorf(x):

1: i← max i such that F[i] ≤ x
2: rep ← “ ”
3: rem ← x
4: while i ≥ 2 :
5: if F[i] ≤ rem :
6: rem −= F[i]
7: rep += 1
8: if rem > 0 :
9: rep +=)
10: i −= 1
11: else:
12: rep += 0
13: i −= 1
14: return rep

Deadly Sins =⇒ Fast Algorithms

Zeckendorf(x):
1: i← max i such that F[i] ≤ i
2: rep ← “ ”
3: rem ← x
4: while i ≥ 2 :
5: if F[i] ≤ rem :
6: rem −= F[i]
7: rep += 1
8: if rem > 0 :
9: rep += 1
10: i −= 1
11: else:
12: rep += 0
13: i −= 1
14: return rep

of i such that Fi ≤ x

=
⌊
logϕ

(
x
√
5
)⌋

= O(log x)

• The while loop does
i = O(log x) iterations

• The work inside the while loop
takes O(1) time

• So Zeckendorf takes
O(log x) time

• Each iteration we add at most 2
characters =⇒
|Zeckendorf(x)| = O(log x)

Deadly Sins =⇒ Fast Algorithms

Zeckendorf(x):
1: i← max i such that F[i] ≤ i
2: rep ← “ ”
3: rem ← x
4: while i ≥ 2 :
5: if F[i] ≤ rem :
6: rem −= F[i]
7: rep += 1
8: if rem > 0 :
9: rep += 0
10: i −= 1
11: else:
12: rep += 0
13: i −= 1
14: return rep

of i such that Fi ≤ x

=
⌊
logϕ

(
x
√
5
)⌋

= O(log x)

• The while loop does
i = O(log x) iterations

• The work inside the while loop
takes O(1) time

• So Zeckendorf takes
O(log x) time

• Each iteration we add at most 2
characters =⇒
|Zeckendorf(x)| = O(log x)

Deadly Sins =⇒ Fast Algorithms

Zeckendorf(x):
1: i← max i such that F[i] ≤ i
2: rep ← “ ”
3: rem ← x
4: while i ≥ 2 :
5: if F[i] ≤ rem :
6: rem −= F[i]
7: rep += 1
8: if rem > 0 :
9: rep += 1
10: i −= 1
11: else:
12: rep += 0
13: i −= 1
14: return rep

of i such that Fi ≤ x

=
⌊
logϕ

(
x
√
5
)⌋

= O(log x)

• The while loop does
i = O(log x) iterations

• The work inside the while loop
takes O(1) time

• So Zeckendorf takes
O(log x) time

• Each iteration we add at most 2
characters =⇒
|Zeckendorf(x)| = O(log x)

Deadly Sins =⇒ Fast Algorithms

Zeckendorf(x):
1: i← max i such that F[i] ≤ i
2: rep ← “ ”
3: rem ← x
4: while i ≥ 2 :
5: if F[i] ≤ rem :
6: rem −= F[i]
7: rep += 1
8: if rem > 0 :
9: rep += 1
10: i −= 1
11: else:
12: rep += 0
13: i −= 1
14: return rep

of i such that Fi ≤ x

=
⌊
logϕ

(
x
√
5
)⌋

= O(log x)

• The while loop does
i = O(log x) iterations

• The work inside the while loop
takes O(1) time

• So Zeckendorf takes
O(log x) time

• Each iteration we add at most 2
characters =⇒
|Zeckendorf(x)| = O(log x)

Undo

Frodnekcez(rep[0..n]):
1: res← 0
2: for i← 0..n:
3: if rep[i] = 1:
4: res += F[i+ 2] ⟨⟨ Remember we don’t use F0 or F1 ⟩⟩
5: return res

Runtime analysis:

• Work is constant for each iteration of the for loop =⇒ O(n)

• If rep[0..n] = Zeckendorf(x) then O(n) = O(log x)

A Fibonacci Code

We now show how to assign natural numbers a code word using the
Zeckendorf Decomposition [FK96]

• The length of the Zeckendorf Representation for numbers can vary

▶ Zeckendorf(2) = 01, Zeckendorf(7) = 0101

• We want to be able to send this bit strings and tell when a character
begins and ends

▶ Does 0101 correspond to [2, 2] or [7]?

• Solution: Add a “comma” using an extra 1

▶ ENC([2, 2]) = 011011, ENC([7]) = 01011

Heavy Lifting Has Already Been Done

enc(x):
1: return Zeckendorf(x) + 1 ⟨⟨ add comma ⟩⟩

dec(rep[0..n]):
1: return Frodnekcez(rep[0..n− 1]) ⟨⟨ remove comma ⟩⟩

Runtime analysis:

• Same as Zeckendorf and Frodnekcez

Heavy Lifting Has Already Been Done

encode(m[0..n]):
1: code← “ ”
2: for i← 0..n:
3: val← ord(m[i])
4: code += enc(val)
5: return code

Runtime analysis:

• To simplify our life, since ord(m[i]) is some Unicode value which has
a set maximum, enc runs in constant time

▶ More precise analysis would require knowledge of the distribution of
characters in whatever language being used. Ask your nearest linguist.

• Thus, encode(m[0..n]) runs in O(n) time

Heavy Lifting Has Already Been Done
decode(code[0..n]):
m← “ ”
i← 0
while i ≤ n:
j ← smallest j > i such that
code[j] = code[j + 1] = 1
rep = code[i..j + 1]
x← dec(rep)
m += chr(x)
i← j + 2

return m

Runtime analysis:

• By similar logic, decode(code[0..n]) runs in O(n) time

An Example

S I G m a
83 73 71 109 97

0101001011 0001010011 0010010011 01010100011 00001000011

Containment of Errors

Claim: When a single error occurs, at most 3 codewords are lost

• We know that enc(x) ends with 011 for all x > 1

• For such x, if an error occurs outside of these last 3 bits, only one
codeword is lost:

▶ If a 01 gets turned into a 11, if a 0 is deleted, or if a 1 is inserted in
some specific spot, then one codeword may turn into two

▶ Consider 0101011 ; 0111011 / 011011 / 01101011

▶ Otherwise, we just misconvert that single codeword

Questions?

Abstract is a word people use when they haven’t gotten used to something

— EUGENE LERMAN (8/28/2023)

Question: Containment of Errors

Claim: When a single error occurs, at most 3 codewords are lost

• We know that enc(x) ends with 011 for all x > 1

• For such x, if an error occurs outside of these last 3 bits, only one
codeword is lost:

▶ If a 01 gets turned into a 11, if a 0 is deleted, or if a 1 is inserted in
some specific spot, then one codeword may turn into two

▶ Consider 0101011 ; 0111011 / 011011 / 01101011

▶ Otherwise, we just misconvert that single codeword

Exercise: Consider what may happen in the cases of insertion, deletion,
and bitflipping for each of the last three bits of enc(x) for x > 1

Bibliography

Aviezri S. Fraenkel and Shmuel T. Kleinb.

Robust universal complete codes for transmission and compression.

Discrete Applied Mathematics, 64(1):31–55, January 1996.

E. Zeckendorf.

Représentation des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas.

Bull. Soc. R. Sci. Liège, 41:179–182, 1972.

	Officers in No Particular Order
	Fibonacci Codes

