A Crash Course in Bioinformatics and Image Processing For Math People

Dey, Arion

Outline

What is Bioinformatics

Some cool algorithms in Genomics! Smith-Waterman Algorithm Burrows-Wheeler Transform

Brain Imaging

Active Contour Models

K-Means Clustering

End

Disclaimer

My focus is on breadth, not depth:

- Bioinformatics is a massive field
- It is also much more than just genomics and image processing, but this is what I know.

Section 1

What is Bioinformatics

Despite the message of these first two slides, I love Bioinformatics

'Bioinformatics is an attempt to make molecular biology relevant to reality. All the molecular biologists, devoid of skills beyond those of a laboratory technician, cried out for the mathematicians and programmers to magically extract science from their mountain of shitty results.'

- Fredrick J. Ross

The ones that know coding, usually fear the math

• At the risk of proselytizing the field rather than educating, I want to make clear why I am giving this lecture

The ones that know coding, usually fear the math

- At the risk of proselytizing the field rather than educating, I want to make clear why I am giving this lecture
- Bioinformatics is a unique field, where it is a field defined by computation led by people who are not formally trained in computer science or math

The ones that know coding, usually fear the math

- At the risk of proselytizing the field rather than educating, I want to make clear why I am giving this lecture
- Bioinformatics is a unique field, where it is a field defined by computation led by people who are not formally trained in computer science or math
- The field would benefit from your perspective, as code in bionformatics is often research grade (poorly implemented, poorly documented, often not available)

Section 2

Some cool algorithms in Genomics!

Subsection 1

Smith-Waterman Algorithm

Why do we care about this

• The utility of this algorithm is to determine similar regions in nucleic acid/protein sequences

Why do we care about this

- The utility of this algorithm is to determine similar regions in nucleic acid/protein sequences
- This is useful if you want to see how related a sequence is to another

NCBI Blast

• The NCBI BLAST uses a variation of this to match sequences

	NIH National Library of Medicine National Center for Biotechnology Information						Log in	
В	ILAST ®			Home	Recent Results	Saved Strategies	Help	
te de d	atabase (core.nt) is now the default nucleotide BLAST database. Learn more	re about co	re.nt.					
	Basic Local Alignment Search Tool BLAT finds regions of similarly between biological sequences. The program compares nucleotide or provine sequence to sequence databases and calculates the statistical significance. Learn mo	N E W S	Non-Interactive searc Starting late Septemi WebBLAST and Prim Tue, 24 Sep 2024	ches of nt swite ber 2024 all nor erBLAST searc	th to core_nt h-interactive hes of "nt" will	More BLAST news		
	Web BLAST							
	Nucleotide BLAST ructeotide in ructeotide	blastx d nucleotide (tblastn ▶ translated r	» protein	Prot protein	cein BLA	ST		

Smith-Waterman Recurrence Formula

$$H_{ij} = \max \begin{pmatrix} H_{i-1,j-1} + s(a_i, b_j) & (Match/Mismatch) \\ \max_{k \ge 1} \{H_{i-k,j} - W_k\} & (Gap \text{ in sequence A}) \\ \max_{l \ge 1} \{H_{i,j-l} - W_l\} & (Gap \text{ in sequence B}) \\ 0 & (Local Alignment, no negative scores allowed) \end{pmatrix}$$

- This equation calculates the maximum score at position H_{ij} .
- It considers matches, mismatches, gaps, and the possibility of resetting to 0 (local alignment).

Match and Mismatch Calculation

- Match: If $a_i = b_j$, we add a positive score, e.g., +1.
- Mismatch: If $a_i \neq b_j$, we add a penalty, e.g., -0.3.
- The diagonal move in the matrix is used for both matches and mismatches.

$$H_{ij} = H_{i-1,j-1} + s(a_i, b_j)$$

Match and Mismatch Calculation

	Δ	с	Α	G	с	с	т	с	G	с	т	т	Α	G
Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	1	0	0	0	0	0	0	0	0	0	1	0
Α	0	0	1	0.7	0	0	0	0	0	0	0	0	1	0.7
т	0	0	0											
G	0	0	0											
с	0	1	0				Rules for Score:							
с	0	1	0.7											
Α	0	0	2			Mismatch = -0.3								
т	0	0	0.7				Gap = -(1 - n* 1/3) Min = 0 Gap = -1.33 (n=1) Gap = -1.67 (n=2)							
т	0	0	0.3											
G	0	0	0											
Α	0	0	1				Gap = -2.07 (n=2) Gap = -2 (n=3) Gap = -2.33 (n=4) Gap = -2.67 (n=5)							
с	0	1	0											
G	0	0	0.7											
G	0	0	0											

Gap Penalty Calculation

- Gaps introduce a penalty to the alignment score.
- The gap penalty depends on the number of consecutive gaps.
- For example:

Gap Penalty =
$$-(1 + n \times \frac{1}{3})$$
, where *n* is the number of gaps.

• The longer the gap, the greater the penalty.

Gap Penalty Calculation

Why Reset the Score to Zero?

- In the Smith-Waterman algorithm, we reset the score to zero whenever the alignment score becomes negative.
- This prevents continuing the alignment through poorly matching regions, which would otherwise reduce the overall score.
- By resetting to zero, the algorithm ensures that only the best local alignment is considered, avoiding penalties from distant or unrelated regions.

Local vs. Global Alignment

- Global alignments attempt to align entire sequences, even if the ends are not well-matched, possibly leading to negative scores.
- Local alignments focus only on the most similar subsections of sequences, by resetting negative scores to zero and restarting the alignment.

Example of Resetting the Score

- Suppose one part of two sequences aligns well, but another part aligns poorly.
- Without resetting the score to zero, the poorly aligned section would drag down the overall score.
- By resetting the score at negative values, we focus only on the well-aligned subsequence.

Subsection 2

Burrows-Wheeler Transform

What is the Burrows-Wheeler Transform?

- The Burrows-Wheeler Transform (BWT) is a data transformation algorithm.
- It reorders a string of characters into runs of similar characters.
- Used primarily in data compression and genome indexing algorithms.

Applications of BWT

- Data Compression: BWT is commonly used in compression algorithms like bzip2.
- Genome Sequencing: The BWT is an integral part of algorithms like Bowtie and BWA for genome alignment.
- Efficient Search Algorithms: BWT allows efficient searches through a compressed dataset without needing to decompress it.

• Step 1: Start with a given string and append a special character \$ at the end.

- Step 1: Start with a given string and append a special character \$ at the end.
- Step 2: Generate all cyclic rotations of the string.

- Step 1: Start with a given string and append a special character \$ at the end.
- Step 2: Generate all cyclic rotations of the string.
- Step 3: Sort the rotations lexicographically.

- Step 1: Start with a given string and append a special character \$ at the end.
- Step 2: Generate all cyclic rotations of the string.
- Step 3: Sort the rotations lexicographically.
- Step 4: Extract the last column of the sorted rotations this is the BWT of the string.

BWT Example: Original String and Rotations

- Example: Transform the string "banana\$".
 - 1. Original string: banana\$
 - 2. Cyclic rotations:
 - 🕨 banana\$
 - 🕨 anana\$b
 - 🕨 nana\$ba
 - 🕨 ana\$ban
 - 🕨 na\$bana
 - 🕨 a\$banan
 - 🕨 \$banana

BWT Example: Sorted Rotations and Final BWT

- Sort the rotations lexicographically:
 - 🕨 \$banana
 - 🕨 a\$banan
 - ana\$ban
 - 🕨 anana\$b
 - 🕨 banana\$
 - 🕨 na\$bana
 - 🕨 nana\$ba
- BWT string is the last column: annb\$aa

Reversing the BWT

- Step 1: Construct the sorted matrix of all rotations using the BWT result.
- Step 2: Rebuild the original string by iterating over the first and last columns of the matrix.
- Step 3: Extract the original string from the first row.

Recovering the original String

Understanding the BWT Matrix

- The BWT matrix, M_S , contains all cyclic rotations of a string S, sorted alphabetically.
- The first column of M_S , denoted as F, is the letters of S sorted alphabetically.
- The last column L is the BWT result, representing the last characters of each sorted rotation.

 $M_S =$ All cyclic rotations of S sorted lexicographically

Constructing the LF Matrix

- Let $L \cdot F$ denote the vertical concatenation of L and F.
- LF creates a two-column matrix where each row corresponds to the characters at the start of some cyclic rotation.
- Since L_i precedes F_i in S for each i, sorting LF reveals relationships in the original string.

$$LF = \begin{bmatrix} L_1 & F_1 \\ L_2 & F_2 \\ \vdots & \vdots \\ L_n & F_n \end{bmatrix}$$

Recursive Sorting of LF Matrix

- After forming LF, sort it to progressively recover columns of M_S .
- At each step, reconstruct a new column by sorting the concatenated $L \cdot F$.
- Repeat this process O(n) times to fully reconstruct M_S .

```
New LF = \operatorname{sort}(L \cdot F)\begin{bmatrix} L & F & F_1 \\ L & F & F_2 \\ \vdots & \vdots & \vdots \end{bmatrix}
```

Mathematical Complexity and Completion

- The reconstruction process requires O(n) iterations, where n is the length of the string.
- Each iteration involves sorting, which takes $O(n \log n)$ comparisons.
- Every comparison during sorting takes O(n) time, resulting in an overall complexity of:

$$O(n) \times O(n \log n) \times O(n) = O(n^3 \log n)$$

- Although this is not the most efficient approach, it demonstrates that the BWT contains sufficient information to reconstruct the original string.
- After the final iteration, M_S is fully reconstructed, and the original string is found in the row starting with '\$'.

Section 3

Brain Imaging

Subsection 1

Active Contour Models

Introduction to Active Contour Models (Snakes)

- Active Contour Models (ACMs), or Snakes, are used in image processing for object boundary detection.
- Snakes are curves that evolve to minimize an energy function and capture object boundaries.
- The energy functional is typically composed of internal and external components.

Line Functional

• The line functional represents the intensity of the image, denoted as:

$$E_{\text{line}} = I(x, y)$$

- The sign of E_{line} determines whether the snake is attracted to bright or dark areas.
- Some smoothing or noise reduction can be applied, modifying the line functional to:

$$E_{\text{line}} = \text{filter}(I(x, y))$$

• The line functional guides the snake toward intensity features in the image.

Edge Functional

• The edge functional is based on the gradient of the image and attracts the snake toward edges:

$$E_{\text{edge}} = -\left|\nabla I(x,y)\right|^2$$

- The snake moves towards areas of high intensity gradient, i.e., object boundaries.
- Scale-space continuation is applied using Gaussian smoothing, refining the edge detection:

$$E_{\text{edge}} = -\left|G_{\sigma} \cdot \nabla^2 I(x, y)\right|^2$$

Termination Functional

• Let C(x, y) be the smoothed image:

$$C(x,y) = G_{\sigma} \cdot I(x,y)$$

• The gradient angle θ is defined as:

$$\theta = \arctan\left(\frac{C_y}{C_x}\right)$$

• The termination functional minimizes energy using the second derivatives along the gradient direction, defined as:

$$E_{\rm term} = \frac{\partial \theta}{\partial n_{\perp}} \frac{\partial^2 C}{\partial n_{\perp}^2} - \frac{\partial \theta}{\partial C}$$

• This captures features such as corners and terminations in the image.

Mathematical Overview of the Snake's Energy Function

• The total energy of the snake is the sum of all functional energies:

$$E_{\text{snake}} = E_{\text{line}} + E_{\text{edge}} + E_{\text{term}}$$

- The snake evolves to minimize this total energy, balancing smoothness (internal energy) and attraction to image features (external energy).
- Internal energy ensures smoothness and continuity of the snake, while external energy pulls it toward edges and key features.

Summary of Active Contour Energy Functionals

- *Line Functional*: Guides the snake toward intensity regions in the image.
- *Edge Functional*: Pulls the snake toward edges, detected using gradients.
- *Termination Functional*: Captures corners and key feature terminations.
- The snake minimizes these energies to conform to object boundaries while maintaining smoothness.

Visual Example of a Snake

Why would we use this?

Subsection 2

K-Means Clustering

Applications of K-Means in MRI

- Brain Tumor Segmentation: K-means can help identify and separate tumor tissue from healthy brain tissue by clustering pixels based on intensity.
- Tissue Classification: Different tissue types (e.g., gray matter, white matter, cerebrospinal fluid) can be distinguished by clustering based on pixel intensity and texture.
- Organ Segmentation: K-means can be used to segment organs, such as the liver or kidneys, to facilitate volumetric analysis.

How K-Means Works in MRI Segmentation

- Input: The algorithm takes the pixel intensities from MRI images as input data points.
- Clustering: K-means groups pixels with similar intensities into clusters, with each cluster ideally representing a specific type of tissue or region.
- Output: The resulting clusters highlight areas of interest, such as lesions, tumors, or other abnormalities.

$$D(V, X) = \frac{1}{N} \sum_{i=1}^{N} \min_{k} d^{2}(v_{i}, x_{k})$$

Introduction to the K-Means Greedy Algorithm

- The K-Means Greedy Algorithm is a variant of the traditional K-means clustering algorithm.
- It uses a greedy approach to iteratively improve cluster assignments.
- The goal is to reduce the overall cost (or error) by moving points to the cluster that offers the largest improvement.

Pseudocode for the K-Means Greedy Algorithm

```
ProgressiveGreedvK-Means(k)
Select an arbitrary partition P into k clusters
while forever
\texttt{bestChange} \leftarrow 0
for every cluster C
for every element i not in C
if cost(P) - cost(P_{i \rightarrow C}) > bestChange
bestChange \leftarrow cost(P) - cost(P_{i \rightarrow C})
i * \leftarrow T
C* \leftarrow C
if bestChange > 0
Change partition P by moving i* to C*
else
return P
```


Explanation of the Algorithm - Initialization

- Step 1: Start with an arbitrary partition P of the data into k clusters.
- Step 2: Initialize a variable, bestChange, to track the maximum improvement in cost by reassigning points.

Explanation of the Algorithm - Cluster Evaluation

- For each cluster C, evaluate the cost impact of moving each element i (not already in C) to C.
- Calculate the change in cost if i were moved to C:

$$bestChange \leftarrow cost(P) - cost(P_{i \rightarrow C})$$

• Update i* and C* to the element and cluster that maximize this cost reduction.

Explanation of the Algorithm - Reassignment

- If the best change in cost is positive (bestChange > 0), reassign element i* to cluster C*.
- If no assignment results in a positive cost reduction, terminate the algorithm and return the current partition.
- This process is repeated until no further cost improvements are possible.

Questions?

Brainteaser

	Δ	с	Α	G	с	с	т	с	G	с	т	т	Α	G
Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	1	0	0	0	0	0	0	0	0	0	1	0
A	0	0	1	0.7	0	0	0	0	0	0	0	0	1	0.7
т	0	0	0	0.7	0.3	0	1	0	0	0	1	1	0	0.7
G	0	0	0	1	0.3	0	0	0.7	1	0	0	0.7	0.7	1
с	0	1	0	0		1.3	0.3	1	0.3	2	0.7	0.3	0.3	0.3
с	0	1	0.7	0	1		1.7	1.3	1	1.3	1.7	0.3	0	0
A	0	0	2	0.7	0.3		2.7	1.3	1	0.7	1	1.3	1.3	0
т	0	0	0.7	1.7	0.3	1.3		2.3	1	0.7	1.7	2	1	1
т	0	0	0.3	0.3	1.3	1	2.3		2	0.7	1.7	2.7	1.7	1
G	0	0	0	1.3	0	1	1	2		2	1.7	1.3	2.3	2.7
Α	0	0	1	0	1	0.3	0.7	0.7		3	1.7	1.3	2.3	2
с	0	1	0	0.7	1	2	0.7	1.7	1.7		2.7	1.3	1	2
G	0	0	0.7	1	0.3	0.7	1.7	0.3	2.7	1.7	2.7	2.3	1	2
G	о	0	0	1.7	0.7	0.3	0.3	1.3	1.3	2.3	1.3	2.3	2	2

