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Disclaimer

My focus is on breadth, not depth:

• Bioinformatics is a massive field

• It is also much more than just genomics and image processing, but
this is what I know.



Section 1

What is Bioinformatics



Despite the message of these first two slides, I love
Bioinformatics

’Bioinformatics is an attempt to make molecular biology relevant
to reality. All the molecular biologists, devoid of skills beyond
those of a laboratory technician, cried out for the mathematicians
and programmers to magically extract science from their mountain
of shitty results.’

— Fredrick J. Ross



The ones that know coding, usually fear the math

• At the risk of proselytizing the field rather than educating, I want to
make clear why I am giving this lecture

• Bioinformatics is a unique field, where it is a field defined by
computation led by people who are not formally trained in computer
science or math

• The field would benefit from your perspective, as code in
bionformatics is often research grade (poorly implemented, poorly
documented, often not available)
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Section 2

Some cool algorithms in Genomics!



Subsection 1

Smith-Waterman Algorithm



Why do we care about this
• The utility of this algorithm is to determine similar regions in nucleic

acid/protein sequences

• This is useful if you want to see how related a sequence is to another
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NCBI Blast

• The NCBI BLAST uses a variation of this to match sequences



Smith-Waterman Recurrence Formula

Hij = max


Hi−1,j−1 + s(ai, bj) (Match/Mismatch)
maxk≥1{Hi−k,j −Wk} (Gap in sequence A)
maxl≥1{Hi,j−l −Wl} (Gap in sequence B)
0 (Local Alignment, no negative scores allowed)



• This equation calculates the maximum score at position Hij .

• It considers matches, mismatches, gaps, and the possibility of
resetting to 0 (local alignment).



Match and Mismatch Calculation

• Match: If ai = bj , we add a positive score, e.g., +1.

• Mismatch: If ai ̸= bj , we add a penalty, e.g., −0.3.

• The diagonal move in the matrix is used for both matches and
mismatches.

Hij = Hi−1,j−1 + s(ai, bj)



Match and Mismatch Calculation



Gap Penalty Calculation

• Gaps introduce a penalty to the alignment score.

• The gap penalty depends on the number of consecutive gaps.

• For example:

Gap Penalty = −(1 + n× 1

3
), where n is the number of gaps.

• The longer the gap, the greater the penalty.



Gap Penalty Calculation



Why Reset the Score to Zero?

• In the Smith-Waterman algorithm, we reset the score to zero
whenever the alignment score becomes negative.

• This prevents continuing the alignment through poorly matching
regions, which would otherwise reduce the overall score.

• By resetting to zero, the algorithm ensures that only the best local
alignment is considered, avoiding penalties from distant or unrelated
regions.



Local vs. Global Alignment

• Global alignments attempt to align entire sequences, even if the ends
are not well-matched, possibly leading to negative scores.

• Local alignments focus only on the most similar subsections of
sequences, by resetting negative scores to zero and restarting the
alignment.



Example of Resetting the Score

• Suppose one part of two sequences aligns well, but another part
aligns poorly.

• Without resetting the score to zero, the poorly aligned section would
drag down the overall score.

• By resetting the score at negative values, we focus only on the
well-aligned subsequence.



Subsection 2

Burrows-Wheeler Transform



What is the Burrows-Wheeler Transform?

• The Burrows-Wheeler Transform (BWT) is a data transformation
algorithm.

• It reorders a string of characters into runs of similar characters.

• Used primarily in data compression and genome indexing algorithms.



Applications of BWT

• Data Compression: BWT is commonly used in compression
algorithms like bzip2.

• Genome Sequencing: The BWT is an integral part of algorithms like
Bowtie and BWA for genome alignment.

• Efficient Search Algorithms: BWT allows efficient searches through a
compressed dataset without needing to decompress it.



How the Burrows-Wheeler Transform Works

• Step 1: Start with a given string and append a special character $ at
the end.

• Step 2: Generate all cyclic rotations of the string.

• Step 3: Sort the rotations lexicographically.

• Step 4: Extract the last column of the sorted rotations — this is the
BWT of the string.
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BWT Example: Original String and Rotations

• Example: Transform the string "banana$".

1. Original string: banana$

2. Cyclic rotations:

▶ banana$

▶ anana$b

▶ nana$ba

▶ ana$ban

▶ na$bana

▶ a$banan

▶ $banana



BWT Example: Sorted Rotations and Final BWT

• Sort the rotations lexicographically:

▶ $banana

▶ a$banan

▶ ana$ban

▶ anana$b

▶ banana$

▶ na$bana

▶ nana$ba

• BWT string is the last column: annb$aa



Reversing the BWT

• Step 1: Construct the sorted matrix of all rotations using the BWT
result.

• Step 2: Rebuild the original string by iterating over the first and last
columns of the matrix.

• Step 3: Extract the original string from the first row.



Recovering the original String



Understanding the BWT Matrix

• The BWT matrix, MS , contains all cyclic rotations of a string S,
sorted alphabetically.

• The first column of MS , denoted as F , is the letters of S sorted
alphabetically.

• The last column L is the BWT result, representing the last
characters of each sorted rotation.

MS = All cyclic rotations of S sorted lexicographically



Constructing the LF Matrix

• Let L · F denote the vertical concatenation of L and F .

• LF creates a two-column matrix where each row corresponds to the
characters at the start of some cyclic rotation.

• Since Li precedes Fi in S for each i, sorting LF reveals relationships
in the original string.

LF =


L1 F1

L2 F2
...

...
Ln Fn





Recursive Sorting of LF Matrix

• After forming LF , sort it to progressively recover columns of MS .

• At each step, reconstruct a new column by sorting the concatenated
L · F .

• Repeat this process O(n) times to fully reconstruct MS .

New LF = sort(L · F )L F F1

L F F2
...

...
...





Mathematical Complexity and Completion
• The reconstruction process requires O(n) iterations, where n is the

length of the string.

• Each iteration involves sorting, which takes O(n log n) comparisons.

• Every comparison during sorting takes O(n) time, resulting in an
overall complexity of:

O(n)×O(n log n)×O(n) = O(n3 log n)

• Although this is not the most efficient approach, it demonstrates that
the BWT contains sufficient information to reconstruct the original
string.

• After the final iteration, MS is fully reconstructed, and the original
string is found in the row starting with ‘$‘.



Section 3

Brain Imaging



Subsection 1

Active Contour Models



Introduction to Active Contour Models (Snakes)

• Active Contour Models (ACMs), or Snakes, are used in image
processing for object boundary detection.

• Snakes are curves that evolve to minimize an energy function and
capture object boundaries.

• The energy functional is typically composed of internal and external
components.



Line Functional

• The line functional represents the intensity of the image, denoted as:

Eline = I(x, y)

• The sign of Eline determines whether the snake is attracted to bright
or dark areas.

• Some smoothing or noise reduction can be applied, modifying the
line functional to:

Eline = filter(I(x, y))

• The line functional guides the snake toward intensity features in the
image.



Edge Functional

• The edge functional is based on the gradient of the image and
attracts the snake toward edges:

Eedge = − |∇I(x, y)|2

• The snake moves towards areas of high intensity gradient, i.e., object
boundaries.

• Scale-space continuation is applied using Gaussian smoothing,
refining the edge detection:

Eedge = −
∣∣Gσ · ∇2I(x, y)

∣∣2



Termination Functional
• Let C(x, y) be the smoothed image:

C(x, y) = Gσ · I(x, y)

• The gradient angle θ is defined as:

θ = arctan

(
Cy

Cx

)
• The termination functional minimizes energy using the second

derivatives along the gradient direction, defined as:

Eterm =
∂θ

∂n⊥

∂2C

∂n2
⊥
− ∂θ

∂C

• This captures features such as corners and terminations in the image.



Mathematical Overview of the Snake’s Energy Function

• The total energy of the snake is the sum of all functional energies:

Esnake = Eline + Eedge + Eterm

• The snake evolves to minimize this total energy, balancing
smoothness (internal energy) and attraction to image features
(external energy).

• Internal energy ensures smoothness and continuity of the snake,
while external energy pulls it toward edges and key features.



Summary of Active Contour Energy Functionals

• Line Functional : Guides the snake toward intensity regions in the
image.

• Edge Functional : Pulls the snake toward edges, detected using
gradients.

• Termination Functional : Captures corners and key feature
terminations.

• The snake minimizes these energies to conform to object boundaries
while maintaining smoothness.



Visual Example of a Snake



Why would we use this?



Subsection 2

K-Means Clustering



Applications of K-Means in MRI

• Brain Tumor Segmentation: K-means can help identify and separate
tumor tissue from healthy brain tissue by clustering pixels based on
intensity.

• Tissue Classification: Different tissue types (e.g., gray matter, white
matter, cerebrospinal fluid) can be distinguished by clustering based
on pixel intensity and texture.

• Organ Segmentation: K-means can be used to segment organs, such
as the liver or kidneys, to facilitate volumetric analysis.



How K-Means Works in MRI Segmentation

• Input: The algorithm takes the pixel intensities from MRI images as
input data points.

• Clustering: K-means groups pixels with similar intensities into
clusters, with each cluster ideally representing a specific type of
tissue or region.

• Output: The resulting clusters highlight areas of interest, such as
lesions, tumors, or other abnormalities.

D(V,X) =
1

N

N∑
i=1

min
k

d2(vi, xk)



Introduction to the K-Means Greedy Algorithm

• The K-Means Greedy Algorithm is a variant of the traditional
K-means clustering algorithm.

• It uses a greedy approach to iteratively improve cluster assignments.

• The goal is to reduce the overall cost (or error) by moving points to
the cluster that offers the largest improvement.



Pseudocode for the K-Means Greedy Algorithm

ProgressiveGreedyK-Means(k)
Select an arbitrary partition P into k clusters
while forever
bestChange ← 0
for every cluster C
for every element i not in C
if cost(P) - cost(Pi→C) > bestChange
bestChange ← cost(P) - cost(Pi→C)
i* ← I
C* ← C
if bestChange > 0
Change partition P by moving i* to C*
else
return P



Explanation of the Algorithm - Initialization

• Step 1 : Start with an arbitrary partition P of the data into k
clusters.

• Step 2 : Initialize a variable, bestChange, to track the maximum
improvement in cost by reassigning points.



Explanation of the Algorithm - Cluster Evaluation

• For each cluster C, evaluate the cost impact of moving each element
i (not already in C) to C.

• Calculate the change in cost if i were moved to C:

bestChange← cost(P) - cost(Pi→C)

• Update i* and C* to the element and cluster that maximize this cost
reduction.



Explanation of the Algorithm - Reassignment

• If the best change in cost is positive (bestChange > 0), reassign
element i∗ to cluster C∗.

• If no assignment results in a positive cost reduction, terminate the
algorithm and return the current partition.

• This process is repeated until no further cost improvements are
possible.



Questions?



Brainteaser
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