Complexity & Fine-Grained Complexity

Sam Ruggerio

Fine Grained Complexity

What is Computational Complexity?

What are reductions?
What is FGC?
What do people research in FGC?

Complexity Primer

How do we determine the difficulty of a problem?

There are many intuitive ways - but we’re computer scientists!

Determine difficulty based on the runtime of an algorithm that solves
the problem.

But what is our ground truth of computation? How do we know we
have the best algorithm?

2

Complexity Primer

® Sometimes we don’t know the best algorithm!
® We can still prove difficulty - just via other means.

® However, we will sometimes need to choose a model of computation
as well.

2

Runtime Symbols

® O(f(n)), some function g(n) € O(f(n)) if g(n) grows as much or no
faster than f(n)

> O(n) grows linearly w.r.t n. O(n?) grows quadratically.

> nlog(n) € O(n?) because it does not grow faster than O(n?). It is not
in O(n).

* O(f(n)), ... "grows as-fast-as" ... ("Tight")

® Q(f(n)), ... "grows at-least as fast as" ("Lower Bound")

Runtime Symbols

® o(f(n)), some function g(n) € o(f(n)) if g(n) grows strictly less than
f(n)
> n? € 0(n?), but n? ¢ o(n?)

1.99999999 c 0(7?,2)

> This is useful because we can say n without needing

specifics.

® w(f(n)), ... "grows strictly faster than" ... ("Lower Bound")

2

Runtime Summary

® You can view these Runtime Notations as (roughly) inequalities:
g9(n) € O(f(n)) < g(n) < f(n)

g(n) € o(f(n)) <= g(n) < f(n)
g9(n) € ©(f(n)) < g(n) = f(n)
g9(n) e w(f(n)) < g(n) > f(n)
g9(n) € Q(f(n)) <= g(n) = f(n)

® But remember that these still abstract away constants and
lower-order terms.

>
| 2
> g(n
>

n

Lower Bound Example 1

® How do we know that taking the min of n elements needs to take at
least Q(n) time?

® We proceed on contradiction:
> Assume we have an min() algorithm which runs in o(n)
» Then there must be some element we didn’t observe...

» Thus, adversarialy that element can be the minimum, so no such
algorithm exists!

® So min() € Q(n)

Lower Bound Example 2

® How do we know that sorting is Q(nlogn)?

e In this case, we change our model of computation to a model of
decision trees

® The only operation we have available is to compare two elements and
make new decisions.

® This is very different from how we program, or even think about
Turing machines.

2

Lower Bound Example 2

<1,3,2>

<3,1,2>

<2,3,1>

<3,2,1>

Lower Bound Example 2

There are n! possible permutations, thus n! possible leaves

A tree of height h has at most 2" leaves
We find an h such that 2" > n!

log(2") > log(n!) = h > nlog(n)

Thus sorting n elements is Q(n log(n))

P, NP, & More

e The first week we talked about P vs NP
® P are problems decidable in polynomial time

® NP are problems decidable in non-deterministic, polynomial time

» You can view non-determinism as always-perfect guessing or infinite
multithreading

» The equivalent definition is problems whose solutions can be checked
in polynomial time

P, NP, & More

We know, via the Cook-Levin Theorem that Boolean Satisfiability is
NP-Complete.

This means it is representatively hard for all problems in NP

These problems are also exponentially hard, i.e. runtimes on the
order of O(2").

This is not very useful to try and compute for any reasonable size

P, NP, & More

We don’t know if these problems have lower bounds that are not
exponential (P vs NP)

If we have a hunch a problem is hard, how do we prove it?

Cook-Levin is a given, but its proof is tedious and complex to
replicate for other problem types.

We can bypass this tediousness with reductions!

Reductions

We can show a problem is just as hard as another problem by
reducing a known hard problem to our target problem.

Let A be our NP-Hard problem and B be our target problem.

We’re given an instance of A, e.g. if we had an algorithm for A, this
would be the input.

» Boolean Formula, Graph, etc.

We take that instance of A and design an algorithm to convert it to
an instance of B

We this conversion to ensure that if we were to answer A one way, we
answer B the same way.

Reductions

® Now given this conversion, we assume if we had a fast algorithm for
B, then this could imply a fast algorithm for A

¢ As long as the runtime of our converter algorithm is polynomial (for
NP-Hard reductions), this is a valid claim.

® Since A was NP-Hard, we now know that B must be NP-Hard

3SAT
MAXINDSET |size of largest TRUE TRUE
transform i G has an Dis
ki »| inom G setin @ independent | satisfiable

3CNF set of size k
Boolean

formula

time

FALSE FALSE

G has no @ is not
independent | satisfiable
number of clauses in ® set of size k

Figure 12.7. A polynomial-time reduction from 3SAT to MAXINDSET.

Looking at Fine Grained Complexity

P vs NP is cool and all - but trodded ground

It’s unlikely anyone will make meaningful progress other than
showing problems are hard

But what about problems we know how to solve fast?

How fast can we solve these problems?

Looking at Fine Grained Complexity

e FGC looks at complexity at a function level: Problems that are
O(n?) and reducing between them.

® The techniques of reductions still apply, but now if we’re trying to
show something is O(n?)-hard, our reduction can’t be slower than

O(n?)

® O(n?) is just an example, reductions between problems in P is the
idea.

Leetcode Haunts Us

e TwoSuM: Given an array of n numbers, find 2 numbers that sum to
t

e How do we solve it?

e Iterate through, storing ¢ — 4 in a BST or Hashmap. O(nlogn) or
O(n) expected.

2

Leetcode Haunts Us

THREESUM: Given an array of n numbers, find 3 numbers that sum
to 0

® How do we solve it?

Iterate through, Calling TwoOSUM with the value at the given index
as t, and the rest of the array

® O(n) calls to TwoSum, O(n?).

2

3SUM

Can we do better?

We... don’t know!

Using the same decision tree analysis as we did with sorting, Kane,
Lovett and Moran showed 3SUM has a O(nlog?(n)) decision
complexity

No-one has been able to come up with a working sub-quadratic
algorithm for the purely general case.

2

3SUM

e This constant searching has led to the 3SUM Conjecture:

» There is no algorithm to solve 3SUM in O(n?~¢) for € > 0

e With this has led to a massive field of research, reductions, and
discoveries

Geombase

® We turn to another problem, Geombase:

Fir 1 An examnle of GendR ace

Geombase

® Given n points on 3 parallel lines, is there 3 points that are co-linear
across the 3 lines?

® We can show that this problem is 3SUM hard!

3SUM to Geombase

® Given n points on 3 parallel lines, is there 3 points that are co-linear
across the 3 lines?

® We can show that this problem is 3SUM hard!

3SUM to Geombase

Equivalent 3SUM Problem: Given 3 arrays A, B, C find one element
in each such that a +b+¢=10

We take each element a € A and make a point (2a,0), b € B, (2b,2),
and c € C, (—¢,1)

We see that a solution is finding three points (z;,0), (z;,1), (x, 2)
where z; + z3, = 2z

With the points we made, 2a +2b=—-2¢c = a+b+c=0

This reduction took O(n) time, thus Geombase is 3SU M-Hard.

Improvements to 3SSUM

® People still try to find better algorithms, because they are tractable!

e In 2018 Timothy M Chan (Professor Here!) found a
O(n?(loglogn)®M /log?(n)) solution to 3SUM

e With certain assumptions, 3SUM can be solved relatively fast as well
(such as a bounded universe).

Other Conjectures

e All Pairs Shortest Path (APSP)
» Find the shortest path between all pairs of vertices
> We can reduce to matrix multiplication... O(n“) for w = 2.371522
> Is there a combinatorial algorithm O(n3~¢)?

¢ Orthogonal Vectors (OV)
> Given two sets of bitvectors of size d, find a pair for which a-b =10
> O(dn?), O(4? +n) (when d is small).

> Conjecture: No O(n?~¢) when d >> log(n)

2

Connections to NP

¢ Orthogonal Vectors (OV) has a reduction from k-SAT!
» Suppose a O(d°Mn?=¢) algorithm existed for OV...

» Through some care, we can take a k-CNF Boolean Formula and turn
it into two sets of size 2("/2).

» Then we can solve k-SAT in O*(2(!=¢/2)") time!

> O*(-) hides polynomial factors.

Questions?

