
Complexity & Fine-Grained Complexity

Sam Ruggerio



Fine Grained Complexity

• What is Computational Complexity?

• What are reductions?

• What is FGC?

• What do people research in FGC?



Complexity Primer

• How do we determine the difficulty of a problem?

• There are many intuitive ways - but we’re computer scientists!

• Determine difficulty based on the runtime of an algorithm that solves
the problem.

• But what is our ground truth of computation? How do we know we
have the best algorithm?



Complexity Primer

• Sometimes we don’t know the best algorithm!

• We can still prove difficulty - just via other means.

• However, we will sometimes need to choose a model of computation
as well.



Runtime Symbols

• O(f(n)), some function g(n) ∈ O(f(n)) if g(n) grows as much or no
faster than f(n)

▶ O(n) grows linearly w.r.t n. O(n2) grows quadratically.

▶ n log(n) ∈ O(n2) because it does not grow faster than O(n2). It is not
in O(n).

• Θ(f(n)), ... "grows as-fast-as" ... ("Tight")

• Ω(f(n)), ... "grows at-least as fast as" ("Lower Bound")



Runtime Symbols

• o(f(n)), some function g(n) ∈ o(f(n)) if g(n) grows strictly less than
f(n)

▶ n2 ∈ O(n2), but n2 ̸∈ o(n2)

▶ This is useful because we can say n1.99999999 ∈ o(n2) without needing
specifics.

• ω(f(n)), ... "grows strictly faster than" ... ("Lower Bound")



Runtime Summary

• You can view these Runtime Notations as (roughly) inequalities:

▶ g(n) ∈ O(f(n)) ⇐⇒ g(n) ≤ f(n)

▶ g(n) ∈ o(f(n)) ⇐⇒ g(n) < f(n)

▶ g(n) ∈ Θ(f(n)) ⇐⇒ g(n) = f(n)

▶ g(n) ∈ ω(f(n)) ⇐⇒ g(n) > f(n)

▶ g(n) ∈ Ω(f(n)) ⇐⇒ g(n) ≥ f(n)

• But remember that these still abstract away constants and
lower-order terms.



Lower Bound Example 1

• How do we know that taking the min of n elements needs to take at
least Ω(n) time?

• We proceed on contradiction:

▶ Assume we have an min() algorithm which runs in o(n)

▶ Then there must be some element we didn’t observe...

▶ Thus, adversarialy that element can be the minimum, so no such
algorithm exists!

• So min() ∈ Ω(n)



Lower Bound Example 2

• How do we know that sorting is Ω(n log n)?

• In this case, we change our model of computation to a model of
decision trees

• The only operation we have available is to compare two elements and
make new decisions.

• This is very different from how we program, or even think about
Turing machines.



Lower Bound Example 2



Lower Bound Example 2

• There are n! possible permutations, thus n! possible leaves

• A tree of height h has at most 2h leaves

• We find an h such that 2h ≥ n!

• log
(
2h
)
≥ log(n!) =⇒ h ≥ n log(n)

• Thus sorting n elements is Ω(n log(n))



P, NP, & More

• The first week we talked about P vs NP

• P are problems decidable in polynomial time

• NP are problems decidable in non-deterministic, polynomial time

▶ You can view non-determinism as always-perfect guessing or infinite
multithreading

▶ The equivalent definition is problems whose solutions can be checked
in polynomial time



P, NP, & More

• We know, via the Cook-Levin Theorem that Boolean Satisfiability is
NP-Complete.

• This means it is representatively hard for all problems in NP

• These problems are also exponentially hard, i.e. runtimes on the
order of O(2n).

• This is not very useful to try and compute for any reasonable size



P, NP, & More

• We don’t know if these problems have lower bounds that are not
exponential (P vs NP)

• If we have a hunch a problem is hard, how do we prove it?

• Cook-Levin is a given, but its proof is tedious and complex to
replicate for other problem types.

• We can bypass this tediousness with reductions!



Reductions

• We can show a problem is just as hard as another problem by
reducing a known hard problem to our target problem.

• Let A be our NP-Hard problem and B be our target problem.

• We’re given an instance of A, e.g. if we had an algorithm for A, this
would be the input.

▶ Boolean Formula, Graph, etc.

• We take that instance of A and design an algorithm to convert it to
an instance of B

• We this conversion to ensure that if we were to answer A one way, we
answer B the same way.



Reductions

• Now given this conversion, we assume if we had a fast algorithm for
B, then this could imply a fast algorithm for A

• As long as the runtime of our converter algorithm is polynomial (for
NP-Hard reductions), this is a valid claim.

• Since A was NP-Hard, we now know that B must be NP-Hard



Looking at Fine Grained Complexity

• P vs NP is cool and all - but trodded ground

• It’s unlikely anyone will make meaningful progress other than
showing problems are hard

• But what about problems we know how to solve fast?

• How fast can we solve these problems?



Looking at Fine Grained Complexity

• FGC looks at complexity at a function level: Problems that are
O(n2) and reducing between them.

• The techniques of reductions still apply, but now if we’re trying to
show something is O(n2)-hard, our reduction can’t be slower than
O(n2)

• O(n2) is just an example, reductions between problems in P is the
idea.



Leetcode Haunts Us

• TwoSum: Given an array of n numbers, find 2 numbers that sum to
t

• How do we solve it?

• Iterate through, storing t− i in a BST or Hashmap. O(n log n) or
O(n) expected.



Leetcode Haunts Us

• ThreeSum: Given an array of n numbers, find 3 numbers that sum
to 0

• How do we solve it?

• Iterate through, Calling TwoSum with the value at the given index
as t, and the rest of the array

• O(n) calls to TwoSum, O(n2).



3SUM

• Can we do better?

• We... don’t know!

• Using the same decision tree analysis as we did with sorting, Kane,
Lovett and Moran showed 3SUM has a O(n log2(n)) decision
complexity

• No-one has been able to come up with a working sub-quadratic
algorithm for the purely general case.



3SUM

• This constant searching has led to the 3SUM Conjecture:

▶ There is no algorithm to solve 3SUM in O(n2−ϵ) for ϵ > 0

• With this has led to a massive field of research, reductions, and
discoveries



Geombase

• We turn to another problem, Geombase:



Geombase

• Given n points on 3 parallel lines, is there 3 points that are co-linear
across the 3 lines?

• We can show that this problem is 3SUM hard!



3SUM to Geombase

• Given n points on 3 parallel lines, is there 3 points that are co-linear
across the 3 lines?

• We can show that this problem is 3SUM hard!



3SUM to Geombase

• Equivalent 3SUM Problem: Given 3 arrays A,B,C find one element
in each such that a+ b+ c = 0

• We take each element a ∈ A and make a point (2a, 0), b ∈ B, (2b, 2),
and c ∈ C, (−c, 1)

• We see that a solution is finding three points (xi, 0), (xj , 1), (xk, 2)
where xi + xk = 2xj

• With the points we made, 2a+ 2b = −2c =⇒ a+ b+ c = 0

• This reduction took O(n) time, thus Geombase is 3SUM -Hard.



Improvements to 3SUM

• People still try to find better algorithms, because they are tractable!

• In 2018 Timothy M Chan (Professor Here!) found a
O(n2(log log n)O(1)/log2(n)) solution to 3SUM

• With certain assumptions, 3SUM can be solved relatively fast as well
(such as a bounded universe).



Other Conjectures

• All Pairs Shortest Path (APSP)

▶ Find the shortest path between all pairs of vertices

▶ We can reduce to matrix multiplication... O(nω) for ω = 2.371522

▶ Is there a combinatorial algorithm O(n3−ϵ)?

• Orthogonal Vectors (OV)

▶ Given two sets of bitvectors of size d, find a pair for which a · b = 0

▶ O(dn2), O(4d + n) (when d is small).

▶ Conjecture: No O(n2−ϵ) when d >> log(n)



Connections to NP

• Orthogonal Vectors (OV) has a reduction from k-SAT!

▶ Suppose a O(dO(1)n2−ϵ) algorithm existed for OV...

▶ Through some care, we can take a k-CNF Boolean Formula and turn
it into two sets of size 2(n/2).

▶ Then we can solve k-SAT in O∗(2(1−ϵ/2)n) time!

▶ O∗(·) hides polynomial factors.



Questions?


