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Introduction

Problem

Given a positive integer n, find a nontrivial factor.

A nontrivial factor is a factor other than 1 or n.

If the input size is the number of bits b, there is no known algorithm that
runs in polynomial time.

For simplicity, we’ll often assume that n is composite.

• Checking whether n is prime is easier, and can be done in polynomial
time (AKS primality test).

Important for RSA encryption, whose security depends on the difficulty of
factoring the product of two primes (a semiprime).



Trial Division

The brute force approach: Simply try all integers less than n, checking if
each is a factor.

We only need to check up to
√
n; if we haven’t found a factor by then, n

is prime.

Unfortunately, O(
√
n) = O(

√
2b) = O(2b/2), so the time complexity is

still exponential in the number of bits.

Considering that there’s no known polynomial algorithm, this is not all
that bad. But can we do better?



Fermat’s Algorithm

Suppose n = a · b. Let’s assume n is odd, so a and b are odd.

Then write a = x+ y, b = x− y for some integers x, y, so

n = ab = x2 − y2 =⇒ x2 − n = y2.

Now try values for x, starting from x = ⌈
√
n⌉. For each x, compute

x2 − n, and see if the result is a perfect square.



Example

Consider n = 1081. Then
⌈√

1081
⌉
= 33, so we try:

x x2 y2 = x2 − n

33 1089 8
34 1156 75
35 1225 144

We find 144 is a perfect square, so x = 35, y = 12 works.

Then we can recover a, b:

a = x+ y = 47, b = x− y = 23.

As expected, 47 · 23 = 1081.



Fermat’s Algorithm: Analysis

If a factor is near
√
n, the algorithm is fast – x will not be far from

√
n.

But if the factors are far apart (or worse, if n is prime), we could be
looking from

√
n to near n/2. In the worst case, that takes O(n) time –

even worse than trial division!

We can make some optimizations to skip x that won’t work, guess
approximately where the primes are and start looking for x around there,
or use Fermat’s algorithm to narrow the search space for trial division.

But there’s much better.



Section 2

Dixon’s Algorithm



Modulo

Let’s loosen our conditions a bit, and instead look for x, y such that
x2 − y2 is a multiple of n. In other words,

x2 − y2 ≡ 0 (mod n) =⇒ x2 ≡ y2 (mod n).

We can try to just look for pairs (x, y) satisfying this, but there are a lot
of different possible values of x2 mod n (these remainders are called
quadratic residues). Specifically, if n is the product of just two primes,
there are around n/4 quadratic residues mod n.

We can also try various x, reduce x2 to its remainder mod n, and see if
this result (< n) is a perfect square, like in Fermat’s algorithm.
Unfortunately, there are only

√
n perfect squares less than n, so it will

take a long time to land on one.



Combinations

Landing the quadratic residue x2 mod n on a perfect square is quite hard.
But we don’t need to.

Consider n = 84923. Then, here are some x we might try at some point,
with the remainders factorized into primes:

5132 ≡ 8400 = 24 · 3 · 52 · 7 (mod 84923)

5372 ≡ 33600 = 26 · 3 · 52 · 7 (mod 84923)

Neither of the residues are perfect squares. However, when multiplied:

8400 · 33600 = 210 · 32 · 54 · 72 = (25 · 3 · 52 · 7)2 = 168002.

So we can multiply remainders to get a perfect square!



Combinations

We now have (513 · 537)2 ≡ 168002 (mod 84923). To recover the original
primes, note that 513 · 537 = 275481 ≡ 20712 (mod 84923), so

(513 · 537)2 − 168002 ≡ 207122 − 168002

≡ (20712− 16800)(20712 + 16800)

≡ 0 (mod 84923).

So some divisor of 20712− 16800 is a factor of 84923, and same for
20712 + 16800.

Our factors are then

gcd(20712− 16800, 84923) = 163, gcd(20712 + 16800, 84923) = 521.



Taking this Further

The key idea is that we don’t need to hit a quadratic residue that’s a
perfect square – instead, we can find several residues whose product is a
perfect square.

We could start just squaring numbers above
√
n and tracking the

quadratic residues...

• ...but it’s unrealistic to systematically check all the combinations of
the residues.



Prime Factorization

Let’s return to our earlier example of n = 84923. We had:

5132 ≡ 8400 = 24 · 3 · 52 · 7 (mod 84923)

5372 ≡ 33600 = 26 · 3 · 52 · 7 (mod 84923)

From the prime factorizations, we can tell the product of these residues
will give a square because the resulting exponents will be even.

So we can try:

1. Square a bunch of numbers to get some residues.

2. Find the prime factorization of the residues.

3. Find some way to multiply them so that the sum of the exponents of
each prime in the result is even.



Factor Base

Unfortunately, factoring all the residues and then dealing with all the
different primes that can appear in the factorizations is too much.

Instead:

1. Choose a few small primes up to some bound B – a factor base.

2. Square a bunch of numbers to get some residues.

3. Attempt to factor the residues over the factor base, throwing out any
that contain other prime factors.

The prime factors of the remaining residues are less than B – we call
these residues B-smooth. We can then try to combine the residues so
that the resulting exponents in the prime factorization are even, which
would give us a perfect square.



Example

Suppose n = 4183. We’ll choose B = 11, so our factor base is
{2, 3, 5, 7, 11}. Trying some random numbers not less than ⌈

√
n⌉ = 65,

generate 6 B-smooth numbers:

x x2 y = x2 (mod n) Prime factorization
65 4225 42 2 · 3 · 7
82 6724 2541 3 · 7 · 11
92 8464 98 2 · 72
104 10816 2450 2 · 52 · 72
113 12769 220 22 · 5 · 11
118 13924 1375 53 · 11


1
0
2
2
0


Write the prime factorizations as column vectors, storing the exponent for
each prime in the factor base. The vector above corresponds to y = 2450.



Example

Multiplying residues is equivalent to adding the exponents in their prime
factorizations. So given the 6 column vectors,

1
1
0
1
0



0
1
0
1
1



1
0
2
0
0



1
0
2
2
0



2
1
0
0
1



0
0
3
0
1


our goal is to sum some of them to get a vector where every entry is even
– in other words, 0 (mod 2).



Linear System

Reduce the entries of the vectors mod 2. Then, we want to find
x1, . . . , x6 ∈ {0, 1} (not all zero) such that, mod 2,

x1


1
1
0
1
0

+ x2


0
1
0
1
1

+ x3


1
0
0
0
0

+ x4


1
0
0
0
0

+ x5


0
1
0
0
1

+ x6


0
0
1
0
1

 ≡


0
0
0
0
0

 .

From linear algebra, this always has a solution. There are 5 equations and
6 variables – the vectors are linearly dependent, meaning there is some
solution (x1, x2, x3, x4, x5, x6) ̸= (0, 0, 0, 0, 0, 0).

In this case, (0, 0, 1, 1, 0, 0) works.



Combining the Residues
Our solution (0, 0, 1, 1, 0, 0) corresponds to the 3rd and 4th rows of our
table:

x x2 y = x2 (mod n) Prime factorization
92 8464 98 2 · 72
104 10816 2450 2 · 52 · 72

Let’s multiply these. We have 92 · 104 ≡ 1202 (mod 4183), and

922 · 1042 ≡ 98 · 2450 ≡ (2 · 5 · 72)2 ≡ 4902 (mod 4183)

0 ≡ (92 · 104)2 − 4902 ≡ (1202− 490)(1202 + 490) (mod 4183)

Our factors are then

a = gcd(1202− 490, 4183) = 89, b = gcd(1202 + 490, 4183) = 41.



Dixon’s Algorithm

Given an input n:

1. Choose a factor base of size k, containing all primes up to some
bound B.

2. Generate residues (at least k + 1) that factor over the factor base.

▶ Repeatedly choose (random) numbers between
√
n and n and square

them.

3. From the prime factorizations, use the exponents to create a system
of linear equations mod 2.

4. Find a solution to the system. (e.g., with Gaussian elimination)

5. Multiply the corresponding residues and recover the factors of n.



Analysis

Dixon’s algorithm is dominated mainly by:

• Generation of residues (repeated squaring), most of which will be
discarded due to not factoring over the factor base

• Attempting to factor the residues over the factor base

Choosing the correct upper bound B is important – it turns out to be
about

exp
(√

log n
√
log log n/2

)
.

The (expected) runtime of Dixon’s algorithm ends up as roughly

O
(
exp

(
2
√
2
√

log n
√

log log n
))

.

This is actually sub-exponential in b = log n, thanks to the square roots.



Section 3

Quadratic Sieve



Improving on Dixon’s

Ideas:

1. When generating residues, square values near
√
n. This way, the

residue will be small:

r(x) = x2 − n ≪ n.

2. Choose the primes in the factor base wisely. In particular, choose p
such that

r(x) = x2 − n ≡ 0 (mod p)

has solutions. We’ll see why shortly.



The Sieve

Suppose we have one solution x to x2 − n ≡ 0 (mod p). Then note

r(x+ kp) ≡ (x+ kp)2 − n

≡ x2 + 2kpx+ (kp)2 − n

≡ x2 − n

≡ 0 (mod p).

Therefore, if x is a solution, x+ kp, x+ 2kp, . . . are solutions. Each of
these give residues that are multiples of p.

So by solving x2 − n ≡ 0 (mod p), we get many x that give residues that
are multiples of p at once!



The Sieve

Let x0 = ⌈
√
n⌉. Say we generate an array of residues of some size:

A =
[
r(x0) r(x0 + 1) r(x0 + 2) r(x0 + 3) r(x0 + 4) r(x0 + 5) · · ·

]
Now consider p = 2. Find the solution of r(x) = x2 − n ≡ 0 (mod 2)
closest to ⌈

√
n⌉. Let’s say it’s x0 (it’s either that or x0 + 1). Then we

know 2 divides all of the following:

r(x0), r(x0 + 2), r(x0 + 4), . . .

So we can update our array as follows:

A =
[
r(x0)
2 r(x0 + 1) r(x0+2)

2 r(x0 + 3) r(x0+4)
2 r(x0 + 5) · · ·

]



The Sieve
Next, repeat for other primes p:

• Solve x2 − n ≡ 0 (mod p) to get a sequence of solutions
x, x+ p, x+ 2p, x+ 3p, . . . .

• Divide the corresponding entries in the array A by p.

This is the "sieve" in the quadratic sieve – since we divide every 2nd
element by p, then every 3rd element, then every 5th element, etc.
(reminiscent of the Sieve of Eratosthenes).

Once an entry in A reaches 1, that means the corresponding residue fully
factors over all primes p used in the sieving.

A solution to x2 − n ≡ 0 (mod p) doesn’t actually exist for all p, so we’ll
have to skip some primes p. The primes that we keep constitute our
factor base.



Combining Residues

Once we have enough fully-factoring residues (likely one more than the
size of the factor base), we can create the system of equations as in
Dixon’s algorithm to find the combination of residues that will result in a
perfect square.

Then we can apply difference of squares to get the factors of n, as seen
earlier.



Quadratic Sieve Algorithm
Given an input n:

1. Initialize a large array A to hold information about residues for x
near

√
n.

2. Generate the factor base and sieve:

▶ Solve x2 − n ≡ 0 (mod p) for increasing values of p.

▶ Add the p to the factor base.

▶ Update the entries in A corresponding to the solution.

3. From the prime factorizations, use the exponents to create a system
of linear equations mod 2.

4. Find a solution to the system. (e.g., with Gaussian elimination)

5. Multiply the corresponding residues and recover the factors of n.



Analysis

With proper selection of the size of the factor base (too small and few
residues factor over it; too large and we’ll need a lot of residues to solve
the system of equations), the expected runtime of the quadratic sieve is

O
(
exp

(√
9/8

√
log n

√
log logn

))
.

In particular,
√

9/8 is a smaller value than what appeared there in
Dixon’s algorithm.



In Practice

Currently, the quadratic sieve is the second-fastest known factoring
algorithm, beaten only by the general number field sieve. For numbers
under ≈ 100 digits, the quadratic sieve is still the fastest.

The quadratic sieve was the first to factor RSA-129, a 129-digit
semiprime (in 1994). The factor base used 524339 primes. The data
collection (sieving) took over 5000 MIPS-years, distributed over 1600
computers. The data processing (solving the system) took another 45
hours on a supercomputer.

• We’ve come a long way since:
In 2015, RSA-129 was factored in about one day, with the CADO-NFS open

source implementation of number field sieve, using a commercial cloud

computing service for about $30.

— Wikipedia



Questions?



Brainteaser

Assume 100 zombies are walking on a straight line, all moving with the
same speed. Some are moving towards left, and some towards right. If a
collision occurs between two zombies, they both reverse their direction.
Initially all zombies are standing at 1 unit intervals. For every zombie,
you can see whether it moves left or right, can you predict the number of
collisions?
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