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Section 1

The Function



Motivation

This function is meant to capture different orders of growth.
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3. iterated logarithmic
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Tarjan’s Definition

Definition (Tarjan ’75)

A(i, j) =


2j for i = 0 ∧ j ≥ 1

1 for i ≥ 1 ∧ j = 0

A(i− 1, A(i, j − 1)) otherwise

Definition (Tarjan ’75)

α(i, x) = min { j | A(i, j) ≥ x }
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A sequence of functions

• α(1, n) = ⌊n/2⌋
• α(2, n) = lg n
• α(3, n) = lg∗ n

• β(1, n) = ⌊
√
n⌋

• β(2, n) = lg lg n
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Section 2

RMQ Preprocessing



A Short but Cute Result

Suppose we are given an array of n integers. We want to be able to
answer range minimum queries in few steps.

λ(2k, n) = α(k, n) λ(2k + 1, n) = β(k, n)

Theorem (Alon ’87)
We can answer range minimum queries in k steps using O(nkλ(k, n))
preprocessing space.



A Short but Cute Result

Suppose we are given an array of n integers. We want to be able to
answer range minimum queries in few steps.

λ(2k, n) = α(k, n) λ(2k + 1, n) = β(k, n)

Theorem (Alon ’87)
We can answer range minimum queries in k steps using O(nkλ(k, n))
preprocessing space.



A Short but Cute Result

Suppose we are given an array of n integers. We want to be able to
answer range minimum queries in few steps.

λ(2k, n) = α(k, n) λ(2k + 1, n) = β(k, n)

Theorem (Alon ’87)
We can answer range minimum queries in k steps using O(nkλ(k, n))
preprocessing space.



Divide and Conquer

Let Tk(n) be the time to preprocess an array of n elements for k-step
queries.

T2(n) = 2n lg n

T3(n) = 3n lg lgn

Tk(n) =
n

λ(k − 2, n)
Tk(λ(k − 2, n)) + Tk−2(n/λ(k − 2, n)) + 2n

Tk(n) = O(nkλ(k, n))
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• The analysis is tight.

• The best linear time preprocessing takes α(n) steps.

• Tree queries, linear queries.
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Disjoint Sets



Union-Find

Given a set of elements, label them 1 through n. We want to partition
these elements into buckets, supporting the operations

• Union

• Find



Union-Find

Given a set of elements, label them 1 through n. We want to partition
these elements into buckets, supporting the operations

• Union

• Find



Implementation

Find(x):
y ← x
while y ̸= parent(y)

y ← parent(y)
Compress(x, y)
return x

Compress(x, y):
if x ̸= y

Compress(parent(x), y)
parent(x)← parent(y)
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if rank(x) > rank(y)

leader(y)← x
else

leader(x)← y
if rank(x) = rank(y)

rank(x)← rank(x) + 1

Union(x, y):
x← find(x)
y ← find(y)
UnionLeader(x, y)



Implementation

UnionLeader(x, y):
if rank(x) > rank(y)

leader(y)← x
else

leader(x)← y
if rank(x) = rank(y)

rank(x)← rank(x) + 1

Union(x, y):
x← find(x)
y ← find(y)
UnionLeader(x, y)



Analysis

1. leader ranks only increase

2. parent(x) has lower rank than x

3. size(x) is at least 2rank(x)

4. For any rank r, there are at most n/2r elements of rank r
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2. Number of pointer operations

3. Find is dominated by Compress

4. can make all calls to UnionLeader before Compress

5. can Shatter the tree into two forests
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Compress and Shatter

Compress(x, y, F ):
if rank(x) ≥ s

Compress(x, y, F+)
else if rank(y) < s

Compress(x, y, F−)
else

z ← x
while rank(z) < s

z′ ← parent(z)
parent(z)← z
z ← z′

parent(z)← z
Compress(parent(z), y, F+)
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Analysis

Let T (m,n, r) be the number of pointer operations that m Compress
operation takes, on a tree with n nodes and maximum rank r.

Theorem

T (m,n, r) ≤ nr
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Analysis
Let s = lg r.

Since n+ < n/2s, we have that

T (m+, n+, r) ≤ rn+ ≤ rn/2s = n

T (m,n, r) ≤ T (m−, n−, lg r) +m+ + 2n

Letting T ′(m,n, r) = T (m,n, r)−m,

T ′(m,n, r) ≤ T ′(m,n, lg r) + 2n

Theorem

T (m,n, r) ≤ m+ 2n lg∗ r
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Let s = lg∗ r.
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2lg
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Questions?



Brainteaser (Erickson)

Consider the following game. I choose a positive integer n and keep it
secret; your goal is to discover this integer. We play the game in rounds.
In each round, you write a list of at most n integers on the blackboard. If
you write more than n numbers in a single round, you lose. If n is one of
the numbers you wrote, you win the game; otherwise, I announce which
of the numbers you wrote is smaller or larger than n, and we proceed to
the next round.

Describe a strategy that wins in O(α(n)) rounds.



WAGA WAGA

— Sariel Har-Peled (2024)

All problems in computer science can be solved by another level of indirection.

— David Wheeler (2014)
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