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Section 1

The Function



Motivation

This function is meant to capture different orders of growth.

1. linear

2. logarithmic

3. iterated logarithmic
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Tarjan’s Definition

Definition (Tarjan ’75)

A(i, j) =


2j for i = 0 ∧ j ≥ 1

1 for i ≥ 1 ∧ j = 0

A(i− 1, A(i, j − 1)) otherwise

Definition (Tarjan ’75)

α(i, x) = min { j | A(i, j) ≥ x }
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A sequence of functions

• α(1, n) = ⌊n/2⌋
• α(2, n) = lg n
• α(3, n) = lg∗ n

• β(1, n) = ⌊
√
n⌋

• β(2, n) = lg lg n
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Section 2

RMQ Preprocessing



A Short but Cute Result

Suppose we are given an array of n integers. We want to be able to
answer range minimum queries in few steps.

λ(2k, n) = α(k, n) λ(2k + 1, n) = β(k, n)

Theorem (Alon ’87)
We can answer range minimum queries in k steps using O(nkλ(k, n))
preprocessing space.
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Divide and Conquer

Let Tk(n) be the time to preprocess an array of n elements for k-step
queries.

T2(n) = 2n lg n

T3(n) = 3n lg lgn

Tk(n) =
n

λ(k − 2, n)
Tk(λ(k − 2, n)) + Tk−2(n/λ(k − 2, n)) + 2n

Tk(n) = O(nkλ(k, n))
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Additional Results

• The analysis is tight.

• The best linear time preprocessing takes α(n) steps.

• Tree queries, linear queries.
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Disjoint Sets



Union-Find

Given a set of elements, label them 1 through n. We want to partition
these elements into buckets, supporting the operations

• Union

• Find
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Implementation

Find(x):
y ← x
while y ̸= parent(y)

y ← parent(y)
Compress(x, y)
return x

Compress(x, y):
if x ̸= y

Compress(parent(x), y)
parent(x)← parent(y)
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Analysis
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2. parent(x) has lower rank than x

3. size(x) is at least 2rank(x)

4. For any rank r, there are at most n/2r elements of rank r
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Compress and Shatter

Compress(x, y, F ):
if rank(x) ≥ s

Compress(x, y, F+)
else if rank(y) < s

Compress(x, y, F−)
else

z ← x
while rank(z) < s

z′ ← parent(z)
parent(z)← z
z ← z′

parent(z)← z
Compress(parent(z), y, F+)
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Analysis

Let T (m,n, r) be the number of pointer operations that m Compress
operation takes, on a tree with n nodes and maximum rank r.

Theorem

T (m,n, r) ≤ nr
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T ′(m,n, r) ≤ T ′(m,n, lg r) + 2n

Theorem
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Questions?



Brainteaser (Erickson)

Consider the following game. I choose a positive integer n and keep it
secret; your goal is to discover this integer. We play the game in rounds.
In each round, you write a list of at most n integers on the blackboard. If
you write more than n numbers in a single round, you lose. If n is one of
the numbers you wrote, you win the game; otherwise, I announce which
of the numbers you wrote is smaller or larger than n, and we proceed to
the next round.

Describe a strategy that wins in O(α(n)) rounds.



WAGA WAGA

— Sariel Har-Peled (2024)

All problems in computer science can be solved by another level of indirection.

— David Wheeler (2014)
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