
Inverse Ackermann Function

Ian Chen



Outline

The Function

RMQ Preprocessing

Disjoint Sets



Section 1

The Function



Motivation

This function is meant to capture different orders of growth.

1. linear

2. logarithmic

3. iterated logarithmic



Motivation

This function is meant to capture different orders of growth.

1. linear

2. logarithmic

3. iterated logarithmic



Motivation

This function is meant to capture different orders of growth.

1. linear

2. logarithmic

3. iterated logarithmic



Motivation

This function is meant to capture different orders of growth.

1. linear

2. logarithmic

3. iterated logarithmic



Tarjan’s Definition

Definition (Tarjan ’75)

A(i, j) =


2j for i = 0 ∧ j ≥ 1

1 for i ≥ 1 ∧ j = 0

A(i− 1, A(i, j − 1)) otherwise

Definition (Tarjan ’75)

α(i, x) = min { j | A(i, j) ≥ x }



Tarjan’s Definition

Definition (Tarjan ’75)

A(i, j) =


2j for i = 0 ∧ j ≥ 1

1 for i ≥ 1 ∧ j = 0

A(i− 1, A(i, j − 1)) otherwise

Definition (Tarjan ’75)

α(i, x) = min { j | A(i, j) ≥ x }



Definition

Definition

α(i, j) =


0 for j = 1

⌊j/2⌋ for i = 1 ∧ j > 1

1 + α(i, α(i− 1, j)) otherwise

Definition

β(i, j) =


0 for j = 1⌊√

j
⌋

for i = 1 ∧ j > 1

1 + β(i, β(i− 1, j)) otherwise



Definition

Definition

α(i, j) =


0 for j = 1

⌊j/2⌋ for i = 1 ∧ j > 1

1 + α(i, α(i− 1, j)) otherwise

Definition

β(i, j) =


0 for j = 1⌊√

j
⌋

for i = 1 ∧ j > 1

1 + β(i, β(i− 1, j)) otherwise



Definition

Definition

α(i, j) =


0 for j = 1

⌊j/2⌋ for i = 1 ∧ j > 1

1 + α(i, α(i− 1, j)) otherwise

Definition

β(i, j) =


0 for j = 1⌊√

j
⌋

for i = 1 ∧ j > 1

1 + β(i, β(i− 1, j)) otherwise



Definition

Definition

α(i, j) =


0 for j = 1

⌊j/2⌋ for i = 1 ∧ j > 1

1 + α(i, α(i− 1, j)) otherwise

Definition

β(i, j) =


0 for j = 1⌊√

j
⌋

for i = 1 ∧ j > 1

1 + β(i, β(i− 1, j)) otherwise



A sequence of functions

• α(1, n) = ⌊n/2⌋
• α(2, n) = lg n
• α(3, n) = lg∗ n

• β(1, n) = ⌊
√
n⌋

• β(2, n) = lg lg n



A sequence of functions

• α(1, n) = ⌊n/2⌋
• α(2, n) = lg n
• α(3, n) = lg∗ n

• β(1, n) = ⌊
√
n⌋

• β(2, n) = lg lg n



A sequence of functions

• α(1, n) = ⌊n/2⌋
• α(2, n) = lg n
• α(3, n) = lg∗ n

• β(1, n) = ⌊
√
n⌋

• β(2, n) = lg lg n



A sequence of functions

• α(1, n) = ⌊n/2⌋
• α(2, n) = lg n
• α(3, n) = lg∗ n

• β(1, n) = ⌊
√
n⌋

• β(2, n) = lg lg n



A sequence of functions

• α(1, n) = ⌊n/2⌋
• α(2, n) = lg n
• α(3, n) = lg∗ n

• β(1, n) = ⌊
√
n⌋

• β(2, n) = lg lg n



A sequence of functions

• α(1, n) = ⌊n/2⌋
• α(2, n) = lg n
• α(3, n) = lg∗ n

• β(1, n) = ⌊
√
n⌋

• β(2, n) = lg lg n



Section 2

RMQ Preprocessing



A Short but Cute Result

Suppose we are given an array of n integers. We want to be able to
answer range minimum queries in few steps.

λ(2k, n) = α(k, n) λ(2k + 1, n) = β(k, n)

Theorem (Alon ’87)
We can answer range minimum queries in k steps using O(nkλ(k, n))
preprocessing space.



A Short but Cute Result

Suppose we are given an array of n integers. We want to be able to
answer range minimum queries in few steps.

λ(2k, n) = α(k, n) λ(2k + 1, n) = β(k, n)

Theorem (Alon ’87)
We can answer range minimum queries in k steps using O(nkλ(k, n))
preprocessing space.



A Short but Cute Result

Suppose we are given an array of n integers. We want to be able to
answer range minimum queries in few steps.

λ(2k, n) = α(k, n) λ(2k + 1, n) = β(k, n)

Theorem (Alon ’87)
We can answer range minimum queries in k steps using O(nkλ(k, n))
preprocessing space.



Divide and Conquer

Let Tk(n) be the time to preprocess an array of n elements for k-step
queries.

T2(n) = 2n lg n

T3(n) = 3n lg lgn

Tk(n) =
n

λ(k − 2, n)
Tk(λ(k − 2, n)) + Tk−2(n/λ(k − 2, n)) + 2n

Tk(n) = O(nkλ(k, n))



Divide and Conquer

Let Tk(n) be the time to preprocess an array of n elements for k-step
queries.

T2(n) = 2n lg n

T3(n) = 3n lg lgn

Tk(n) =
n

λ(k − 2, n)
Tk(λ(k − 2, n)) + Tk−2(n/λ(k − 2, n)) + 2n

Tk(n) = O(nkλ(k, n))



Divide and Conquer

Let Tk(n) be the time to preprocess an array of n elements for k-step
queries.

T2(n) = 2n lg n

T3(n) = 3n lg lgn

Tk(n) =
n

λ(k − 2, n)
Tk(λ(k − 2, n)) + Tk−2(n/λ(k − 2, n)) + 2n

Tk(n) = O(nkλ(k, n))



Additional Results

• The analysis is tight.

• The best linear time preprocessing takes α(n) steps.

• Tree queries, linear queries.



Additional Results

• The analysis is tight.

• The best linear time preprocessing takes α(n) steps.

• Tree queries, linear queries.



Additional Results

• The analysis is tight.

• The best linear time preprocessing takes α(n) steps.

• Tree queries, linear queries.



Section 3

Disjoint Sets



Union-Find

Given a set of elements, label them 1 through n. We want to partition
these elements into buckets, supporting the operations

• Union

• Find



Union-Find

Given a set of elements, label them 1 through n. We want to partition
these elements into buckets, supporting the operations

• Union

• Find



Implementation

Find(x):
y ← x
while y ̸= parent(y)

y ← parent(y)
Compress(x, y)
return x

Compress(x, y):
if x ̸= y

Compress(parent(x), y)
parent(x)← parent(y)



Implementation

Find(x):
y ← x
while y ̸= parent(y)

y ← parent(y)
Compress(x, y)
return x

Compress(x, y):
if x ̸= y

Compress(parent(x), y)
parent(x)← parent(y)



Implementation

UnionLeader(x, y):
if rank(x) > rank(y)

leader(y)← x
else

leader(x)← y
if rank(x) = rank(y)

rank(x)← rank(x) + 1

Union(x, y):
x← find(x)
y ← find(y)
UnionLeader(x, y)



Implementation

UnionLeader(x, y):
if rank(x) > rank(y)

leader(y)← x
else

leader(x)← y
if rank(x) = rank(y)

rank(x)← rank(x) + 1

Union(x, y):
x← find(x)
y ← find(y)
UnionLeader(x, y)



Analysis

1. leader ranks only increase

2. parent(x) has lower rank than x

3. size(x) is at least 2rank(x)

4. For any rank r, there are at most n/2r elements of rank r



Analysis

1. leader ranks only increase

2. parent(x) has lower rank than x

3. size(x) is at least 2rank(x)

4. For any rank r, there are at most n/2r elements of rank r



Analysis

1. leader ranks only increase

2. parent(x) has lower rank than x

3. size(x) is at least 2rank(x)

4. For any rank r, there are at most n/2r elements of rank r



Analysis

1. leader ranks only increase

2. parent(x) has lower rank than x

3. size(x) is at least 2rank(x)

4. For any rank r, there are at most n/2r elements of rank r



Analysis

1. Amortized analysis

2. Number of pointer operations

3. Find is dominated by Compress

4. can make all calls to UnionLeader before Compress

5. can Shatter the tree into two forests



Analysis

1. Amortized analysis

2. Number of pointer operations

3. Find is dominated by Compress

4. can make all calls to UnionLeader before Compress

5. can Shatter the tree into two forests



Analysis

1. Amortized analysis

2. Number of pointer operations

3. Find is dominated by Compress

4. can make all calls to UnionLeader before Compress

5. can Shatter the tree into two forests



Analysis

1. Amortized analysis

2. Number of pointer operations

3. Find is dominated by Compress

4. can make all calls to UnionLeader before Compress

5. can Shatter the tree into two forests



Analysis

1. Amortized analysis

2. Number of pointer operations

3. Find is dominated by Compress

4. can make all calls to UnionLeader before Compress

5. can Shatter the tree into two forests



Compress and Shatter

Compress(x, y, F ):
if rank(x) ≥ s

Compress(x, y, F+)
else if rank(y) < s

Compress(x, y, F−)
else

z ← x
while rank(z) < s

z′ ← parent(z)
parent(z)← z
z ← z′

parent(z)← z
Compress(parent(z), y, F+)



Analysis



Analysis



Analysis



Analysis

Let T (m,n, r) be the number of pointer operations that m Compress
operation takes, on a tree with n nodes and maximum rank r.

Theorem

T (m,n, r) ≤ nr



Analysis

Let T (m,n, r) be the number of pointer operations that m Compress
operation takes, on a tree with n nodes and maximum rank r.

Theorem

T (m,n, r) ≤ nr



Analysis

Consider the sequences of m+ and m− Compress calls on F+ and F−.

T (m,n, r) ≤ T (m+, n+, r) + T (m−, n−, r) +m+ + n



Analysis

Consider the sequences of m+ and m− Compress calls on F+ and F−.

T (m,n, r) ≤ T (m+, n+, r) + T (m−, n−, r) +m+ + n



Analysis
Let s = lg r.

Since n+ < n/2s, we have that

T (m+, n+, r) ≤ rn+ ≤ rn/2s = n

T (m,n, r) ≤ T (m−, n−, lg r) +m+ + 2n

Letting T ′(m,n, r) = T (m,n, r)−m,

T ′(m,n, r) ≤ T ′(m,n, lg r) + 2n

Theorem

T (m,n, r) ≤ m+ 2n lg∗ r



Analysis
Let s = lg r.

Since n+ < n/2s, we have that

T (m+, n+, r) ≤ rn+ ≤ rn/2s = n

T (m,n, r) ≤ T (m−, n−, lg r) +m+ + 2n

Letting T ′(m,n, r) = T (m,n, r)−m,

T ′(m,n, r) ≤ T ′(m,n, lg r) + 2n

Theorem

T (m,n, r) ≤ m+ 2n lg∗ r



Analysis
Let s = lg r.

Since n+ < n/2s, we have that

T (m+, n+, r) ≤ rn+ ≤ rn/2s = n

T (m,n, r) ≤ T (m−, n−, lg r) +m+ + 2n

Letting T ′(m,n, r) = T (m,n, r)−m,

T ′(m,n, r) ≤ T ′(m,n, lg r) + 2n

Theorem

T (m,n, r) ≤ m+ 2n lg∗ r



Analysis
Let s = lg r.

Since n+ < n/2s, we have that

T (m+, n+, r) ≤ rn+ ≤ rn/2s = n

T (m,n, r) ≤ T (m−, n−, lg r) +m+ + 2n

Letting T ′(m,n, r) = T (m,n, r)−m,

T ′(m,n, r) ≤ T ′(m,n, lg r) + 2n

Theorem

T (m,n, r) ≤ m+ 2n lg∗ r



Analysis

Let s = lg∗ r.

Since n+ < n/2s, we have that

T (m+, n+, r) ≤ m+ + 2n+ lg∗ r ≤ m+ + 2n
lg∗ r

2lg
∗ r
≤ m+ 2n

Letting T ′(m,n, r) = T (m,n, r)− 2m,

T ′(m,n, r) ≤ T ′(m,n, lg∗ r) + 3n

Theorem

T (m,n, r) ≤ 2m+ 3n lg∗∗ r



Analysis

Let s = lg∗ r.

Since n+ < n/2s, we have that

T (m+, n+, r) ≤ m+ + 2n+ lg∗ r ≤ m+ + 2n
lg∗ r

2lg
∗ r
≤ m+ 2n

Letting T ′(m,n, r) = T (m,n, r)− 2m,

T ′(m,n, r) ≤ T ′(m,n, lg∗ r) + 3n

Theorem

T (m,n, r) ≤ 2m+ 3n lg∗∗ r



Analysis

Let s = lg∗ r.

Since n+ < n/2s, we have that

T (m+, n+, r) ≤ m+ + 2n+ lg∗ r ≤ m+ + 2n
lg∗ r

2lg
∗ r
≤ m+ 2n

Letting T ′(m,n, r) = T (m,n, r)− 2m,

T ′(m,n, r) ≤ T ′(m,n, lg∗ r) + 3n

Theorem

T (m,n, r) ≤ 2m+ 3n lg∗∗ r



Analysis

Let s = lg∗ r.

Since n+ < n/2s, we have that

T (m+, n+, r) ≤ m+ + 2n+ lg∗ r ≤ m+ + 2n
lg∗ r

2lg
∗ r
≤ m+ 2n

Letting T ′(m,n, r) = T (m,n, r)− 2m,

T ′(m,n, r) ≤ T ′(m,n, lg∗ r) + 3n

Theorem

T (m,n, r) ≤ 2m+ 3n lg∗∗ r



Analysis

Theorem

T (m,n, r) ≤ cm+ (c+ 1)n lg∗
c
r

T (m,n, r) ≤ cm+ (c+ 1)nα(c, r)

Theorem

T (m,n, r) ≤ mα(n)



Analysis

Theorem

T (m,n, r) ≤ cm+ (c+ 1)n lg∗
c
r

T (m,n, r) ≤ cm+ (c+ 1)nα(c, r)

Theorem

T (m,n, r) ≤ mα(n)



Analysis

Theorem

T (m,n, r) ≤ cm+ (c+ 1)n lg∗
c
r

T (m,n, r) ≤ cm+ (c+ 1)nα(c, r)

Theorem

T (m,n, r) ≤ mα(n)



Questions?



Brainteaser (Erickson)

Consider the following game. I choose a positive integer n and keep it
secret; your goal is to discover this integer. We play the game in rounds.
In each round, you write a list of at most n integers on the blackboard. If
you write more than n numbers in a single round, you lose. If n is one of
the numbers you wrote, you win the game; otherwise, I announce which
of the numbers you wrote is smaller or larger than n, and we proceed to
the next round.

Describe a strategy that wins in O(α(n)) rounds.



WAGA WAGA

— Sariel Har-Peled (2024)

All problems in computer science can be solved by another level of indirection.

— David Wheeler (2014)



Bibliography I

• Tar75, Tarjan, Efficiency of a good but not linear set union algorithm

• Alon87, Alon & Schieber, Optimal Preprocessing for Answering
On-Line Product Queries

• Jeffe, Erickson, Data Structures for Disjoint Sets


	The Function
	RMQ Preprocessing
	Disjoint Sets

