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Section 1

A Motivating Example



Damped Driven Pendulum

Newton’s Second Law for the damped driven pendulum:

θ̈ + γθ̇ + ω2
0 sin θ = f cos(ωt),

where ω2
0 = g

l and f = F
ml .

We can nondimensionalize (via the Buckingham Π theorem) the
differential equations using the following:
t := ω0t
1
q
:= γ/ω0

f := f/ω2
0

ω := ω/ω0

, which gives θ̈ + 1
q θ̇ + sin θ = f cos(ωt).



A Small Angle Approximation

• For small θ, sin θ ≈ θ, so the differential equation becomes
θ̈ + 1

q θ̇ + θ = f cos(ωt).

• We know that the solution to this differential equation is the sum of
a transient solution that depends on initial conditions and a steady
state solution that is independent of initial solutions.



Section 2

Formal Theory



Definitions

Definition
(X, d) metric space. f : X → X.

1. A fixed point x ∈ X is a point s.t. f(x) = x.
2. A periodic point x ∈ X is a point s.t. ∃n ∈ N : fn(x) = x, where

the least such n is called the prime period.
3. The orbit of x under f (denoted Of (x)) is the sequence

x, f(x), · · · , fn(x), · · · if f not invertible or · · · , f−1(x), x, f(x), · · ·
if f invertible.



Definitions (cont.)

Definition
f : X → X exhibit sensitive dependence on initial conditions if
∃δ > 0 s.t.
∀x ∈ X, ϵ > 0∃y ∈ X,N ∈ N : x ̸= y, d(x, y) < ϵ, d(fN (x), fN (y)) ≥ δ.

Rmk. If a system possesses sensitive dependence, then numerical
computation becomes invalid, because the inaccuracies of numerical
computation become amplified. The true orbit may diverge from the
computed orbit.



Topological Transitivity

Definition
f : X → X is topologically transitive if ∃x ∈ X s.t. Of (x) is dense in
X.

Proposition
If X has no isolated points, f : X → X continuous, then f topologically
transitive is equivalent to the following: for nonempty open sets
U, V ⊂ X, then ∃N ∈ N : fN (U) ∩ V ̸= ∅.

Rmk. Reverse direction is obvious (consider contrapositive). The
following is a proof of the forward direction.



Proof of Proposition (optional)
Proof
∵ f topologically transitive ∴ ∃n,m ∈ Z : fn(x) ∈ U, fm(x) ∈ V . Note
that fn(x) ∈ U → x ∈ f−n(U)→ fm(x) ∈ fm−n(U), hence
fm(x) ∈ fm−n(U) ∩ V ̸= ∅. If m > n, we are done since m− n ∈ N.
Suppose ∄m > n : fm(x) ∈ V . Then there exists decreasing sequence
(nk)

∞
k=1 ⊂ Z s.t.

1. nk ≤ n∀k
2. nk → −∞ as k →∞
3. fnk(x) ∈ V ∀k by denseness of Of (x) in X
4. fnk(x)→ fm(x) as k →∞

∵ fm(x) ∈ fm−n(U) ∴ by (4)
∃m′ ∈ (nk) : m

′ < 2m− n, fm′
(x) ∈ fm−n(U). Pick

x′ := fn−m(fm′
(x)) ∈ fn−m(fm−n(U)) = U . Then

f2m−n−m′
(x′) = fm(x) ∈ V . Take N = 2m− n−m′ ∈ N. Then

x′ ∈ U → fN (x′) ∈ fN (U), and fN (x′) ∈ V , hence fN (U) ∩ V ̸= ∅. ■



Chaos

Definition (Devaney)
f : X → X continuous. f is chaotic if it is topologically transitive and
its periodic points are dense.

Theorem
Chaotic maps exhibit sensitive dependence on initial conditions, unless
the entire space consists of a single periodic orbit.

Rmk. The converse to the theorem is not true. A common
misunderstanding is that chaotic is equivalent to sensitive dependence on
initial conditions. But this is obviously false from definition of chaotic.



Proof of Theorem (Optional)

Proof
We will prove sensitive dependence for ϵ ∈ (0, δ). Then the case ϵ ≥ δ
follows immediately.
Unless the entire space consists of only a single periodic orbit, denseness
of periodic points implies that there exists at least 2 distinct periodic
orbits. Because periodic orbits are disjoint, ∃p, q on separate periodic
orbits s.t. δ := 1

8 min
n,m∈Z

(d(fn(p), fm(q)) > 0. We claim δ works.

Obs. Fix x ∈ X. Then the orbit of either p or q is always at least a
distance of 4δ from x. WLOG this point is q.

Take V :=

n⋂
i=0

f−i(Bo
δ (f

i(q))). By previous proposition,

∃k ∈ N : fk(Bo
ϵ (x)) ∩ V ̸= ∅ → ∃y ∈ Bo

ϵ (x) : f
k(y) ∈ V .



Proof of Theorem (cont.)

Proof
Suppose p ∈ Bo

ϵ (x) and has period n. Consider
N := n(⌊ kn⌋+ 1)→ 0 < N − k ≤ n.
By triangle inequality: d(fN (p), fN (y)) = d(p, fN (y)) ≥
d(x, fN−k(q))− d(fN−k(q), fN (y))− d(p, x) ≥ 4δ − δ − δ = 2δ, because
p ∈ Bo

ϵ (x) ⊂ Bo
δ (x) and fN (y) ∈ fN−k(V ) ⊂ Bo

δ (f
N−k(q)) (take

i = N − k in definition of V ).
Thus, either d(fN (p), fN (x)) ≥ δ or d(fN (y), fN (x)) ≥ δ.
Recall that d(p, x) < ϵ and d(y, x) < ϵ. ■



Example of Chaotic Mapping

Consider f : [−2, 2]→ [−2, 2], x 7→ 2|x| − 2.

• Denseness of periodic points: we can always find subinterval I of
length 1/2n−2 s.t. fn(I) = [−2, 2]. Thus, fn has a fixed point on I.

• Topological transitivity: ∀U ⊂ [−2, 2],∃n ∈ N : fn(U) = [−2, 2].
Then ∀V ⊂ [−2, 2], fn(U) ∩ V ̸= ∅.



Section 3

Lyapunov Exponent



Definition
Definition (Discrete System)
f : X → X. Let x, y be initial points in the phase space. The separation
vector δ(n) is given by δ(n) = fn(x)− fn(y). The Lyapunov exponent
λ is defined as

λ = lim
n→∞

lim
||δ(0)||→0

1

n
ln
||δ(n)||
||δ(0)||

.

Definition (Continuous System)
f : R→ X. Let x, y be two trajectories in the phase space. The
separation vector δ(t) is given by δ(t) = x(t)− y(t). The Lyapunov
exponent λ is defined as

λ = lim
t→∞

lim
||δ(0)||→0

1

t
ln
||δ(t)||
||δ(0)||

.



Remarks

• Intuitively, this means that (for a discrete system) for n large,
||fn(x+ δ)− fn(x)|| ≈ δeλn.

• The Lyapunov Exponent measures the rate at which two initially
extremely close states grow over time.

• If λ > 0, the distance between the two states grows over time, and is
a good indicator of chaotic systems.

• From this, it is obvious that λ > 0 implies that f has sensitive
dependence on initially conditions.

• However, λ > 0 does not necessarily imply chaos. Additional
information regarding the system is needed.



Maximal Lyapunov Exponent

• λ may be different for different initial separation vectors δ(0),
creating a spectrum.

• For example, consider the first order linear system x⃗′ = Ax⃗+ f⃗(t),
with A constant. From differential equations, we can observe that
real parts of eigenvalues of A are Lyapunov exponents.

• We define the maximal Lyapunov exponent as the largest value
in the spectrum.



A Practical Formulation
• From |fn(x+ δ)− fn(x)| ≈ δeλn, isolate λ: λ ≈ 1

n ln
∣∣∣fn(x+δ)−fn(x)

δ

∣∣∣.
• Take δ → 0, we apply definition of a derivative: λ ≈ 1

n ln |(fn(x))′|.

• Using chain rule:

(fn(x))′ = f ′(fn−1(x)) · f ′(fn−2(x)) · · · f ′(f(x)) · f ′(x) =

n−1∏
i=0

f ′(xi),

where xi := f i(x). Substitute in (fn(x))′: λ ≈ 1

n
ln

∣∣∣∣∣
n−1∏
i=0

f ′(xi)

∣∣∣∣∣.
• Take n→∞: λ = lim

n→∞

1

n
ln

∣∣∣∣∣
n∏

i=0

f ′(xi)

∣∣∣∣∣ = lim
n→∞

1

n

n∑
i=0

ln
∣∣f ′(xi)

∣∣.
• For continuous systems, an equivalent formulation is
λ =

∫
f(x) ln |f ′(x)|dx.



Example

• Consider the doubling map on the unit circle: D : S1 → S1

(equivalently D : [0, 2π)→ [0, 2π)), θ 7→ 2θ mod 2π, where Sn

denotes the unit sphere in (n+ 1)-dimensional Euclidean space.

• D′(θ) = 2∀θ ̸= π. We can ignore the discontinuity at θ = π.

• Hence, λ = lim
n→∞

1

n

n∑
i=0

ln
∣∣f ′(xi)

∣∣ = lim
n→∞

1

n

n∑
i=0

ln 2 = ln 2 > 0,

meaning D has sensitive dependence on initial conditions.

• Exercise: prove that D is chaotic.



Section 4

Bifurcations



Attraction and Repulsion

Definition
A fixed point x0 is attracting/stable if ∃λ ∈ (0, 1) and open interval U
containing x0 s.t. |f(x)− f(x0)| = |f(x)− x0| ≤ λ|x− x0|∀x ∈ U .
Similarly, x0 is repelling/unstable if ∃λ > 1 and open interval U
containing x0 s.t. |f(x)− x0| ≥ λ|x− x0|∀x ∈ U .

Rmk. It follows from the definition of attraction that Of (x)→ x0∀x ∈ U .

Definition
A periodic point of period n is attracting (repelling) if it is an attracting
(repelling) fixed point of fn.



A Practical Formulation

Theorem
f : X → X differentiable at fixed point x0 ∈ X. Let a := |f ′(x0)|. Then:

1. x0 is attracting iff a < 1.
2. x0 is repelling iff a > 1.

Proof
We will prove (1). The proof of (2) is similar.
(←) ∵ a = f ′(x0) ∴ ∀ϵ > 0∃δ > 0 : 0 < |x− x0| < δ → |f(x)−f(x0)

x−x0
| ∈

(a− ϵ, a+ ϵ). Take ϵ < 1− a and U = (x0 − δ, x0 + δ).
(→) Consider contrapositive: a ≥ 1→ not attracting.



Bifurcation

• Let λ be a external parameter. Let f : X → X be a function
dependent on λ. Varying λ generates a family of functions, denoted
fλ, where each function in the family uses a different value of λ.

• As we change f by varying λ, there are certain points in the family
where the qualitative behavior of the function changes. These
changes are called bifurcations, and the values of the parameter λ
where these changes occur are called bifurcation points.



Theorem: No Bifurcation

Theorem
Let fλ be a family of functions. Suppose fλ0(x0) = x0 and f ′

λ0
(x0) ̸= 1.

Then ∃ interval I s.t. x0 ∈ I, interval N s.t. λ0 ∈ N , and continuously
differentiable function p : N → I s.t. p(λ0) = x0 and fλ(p(λ)) = p(λ).
Moreover, fλ has no other fixed points in I.

Proof
Consider function g(x, λ) = fλ(x)− x. We have g(x0, λ0) = 0,
∂g
∂x(x0, λ0) = f ′

λ0
(x0)− 1 ̸= 0. Apply the implicit function theorem on g

at (x0, λ0).



Period Doubling Bifurcation: Definition

Definition
A family of functions fλ undergoes a period doubling bifurcation at
λ = λ0 if ∃ open interval I, ϵ > 0 s.t.:

1. ∀λ ∈ [λ0 − ϵ, λ0 + ϵ], ∃! fixed point pλ ∈ I for fλ.
2. ∀λ ∈ (λ0 − ϵ, λ0], fλ has no cycles of period 2 in I and pλ is

attracting (resp. repelling).
3. ∀λ ∈ (λ0, λ0 + ϵ), ∃! 2-cycle q1λ, q

2
λ in I that is attracting (resp.

repelling). Meantime, fixed point pλ is repelling (resp. attracting).
4. As λ→ λ0, qiλ → pλ0 .



Section 5

A Second Look at Damped Driven Pendulum



Spontaneous Symmetry Breaking Bifurcation

θ̈ +
1

q
θ̇ + sin θ = f cos(ωt).

• Note that the pendulum equation is invariant under the
transformation θ 7→ −θ, t 7→ t− π/ω. Thus, if θ1(t) is a solution,
then θ2(t) = −θ1(t− π/ω) is also a solution.

• Physically, this means that the equations make no distinction
between the left and right sides of the vertical θ = 0.

• We say the solution is symmetric if θ1(t) = θ2(t); otherwise,
spontaneous symmetry breaking has occurred. This symmetry
breaking produces an additional loop on the phase diagram.



Spontaneous Symmetry Breaking Bifurcation (cont.)

• At q ≈ 1.246, the symmetry is broken.

• For q < 1.246, the asymptotic solution (limit cycle) is symmetric.

• For q > 1.246, there exists a pair of stable, asymmetric asymptotic
solutions. The original limit cycle still exists but becomes unstable.
Depending on initial conditions, the trajectory converges to one of
the stable limit cycles.

• Demo!



Period Doubling Bifurcation

Demo!



Bifurcation Diagram

1. Find limit cycle for some q and plot it in the 2D phase plane.

2. Construct is a 1D subspace (called the Poincare section) of the 2D
phase plane.

3. Take the intersection of the limit cycle and the Poincare section.

4. Plot data points where q is the x coordinate and θ is y coordinate.



Very Scuffed Bifurcation Diagram that I drew

Figure: Bifurcation Diagram of the Damped Driven Pendulum with
f = 1, 5, ω = 2/3, and 1.367 < q < 1.377.



Section 6

A Classic Example: Logistic Map



Definition

A 1D map can be expressed in the form of xn+1 = f(xn).

Definition
The logistic map is a family of functions
fµ : R→ R, x 7→ µx(1− x), µ ∈ R.

Specifically, we will investigate µ > 0.



First Period Doubling Bifurcation
• Recall that fixed point x∗ is stable if |f ′(x∗)| < 1 and unstable if
|f ′(x∗)| > 1. Bifurcations usually occur at the marginally stable
point of |f ′(x∗)| = 1.

• The initial fixed points for small µ are:
x = µx(1− x)→ x∗ = 0, 1− 1/µ. f ′

µ = µ(1− 2x), so x∗ = 0 is stable
for 0 < µ < 1, and x∗ = 1− 1/µ is stable for 1 < µ < 3.

• At µ = 3, x∗ = 1− 1/3 = 2/3, and
f ′
µ(x∗) = µ(1− 2x∗) = 3(1− 2 · 2/3) = −1, which is a marginally

stable point, causing the first bifurcation.

• The 2 periodic points (denoted x0 and x1) after the bifurcation must
both satisfy x = fµ(fµ(x)) = f2

µ(x), which is a quartic equation.
Note that 2 roots are the initial fixed points x∗ = 0, 1− 1/µ, so
factor them out to get x1, x2 =

1
2µ(µ+ 1±

√
(µ+ 1)(µ− 3)).



Subsequent Period Doubling Bifurcations

• To find the value of µ at which a bifurcation occurs (going from
period-2n−1 to period-2n, we use (f2n−1

µ )′(xi) = −1 for all fixed
points xi of f2n−1

µ .

• Using the chain rule,
(f2n−1

µ )′(x0) = f ′
µ(f

2n−1−1
µ (x0))f

′
µ(f

2n−1−2
µ (x0)) · · · f ′

µ(fµ(x0))f
′
µ(x0)

= f ′
µ(x2n−1−1)f

′
µ(x2n−2−2) · · · f ′

µ(x1)f
′
µ(x0) =

2n−1−1∏
i=0

f ′
µ(xi) =

2n−1−1∏
i=0

µ(1− 2xi) = −1.

• We know where the fixed points xi are for period-2n−1, so we can
solve the equation as a function in µ.



Feigenbaum Constant

• It turns out that if we take the ratio of the space between
consecutive period doubling bifurcation points of the logistic map, we
approach a value known as the Feigenbaum constant δ = 4.669...
(A006890 in OEIS).

• Let qn be the value of q of the n-th bifurcation. Let δn := qn+1−qn
qn+2−qn+1

.
Then δ := lim

n→∞
δn.

• This constant is universal for all 1D maps with a single locally
quadratic maximum.



Questions?



Further Reading

• Theorems for sufficient conditions of saddle node bifurcations and
period doubling bifurcations

• Topological conjugacy and structural stability

• Sharkovsky’s Theorem

• Fractal dimension of strange attractors



Chaos is lawless behavior governed entirely by law.

— Ian Stewart (1989)
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