Dynamics and Chaos

Hanyang Sha

12-02-2024



Outline

A Motivating Example

Formal Theory

Lyapunov Exponent

Bifurcations

A Second Look at Damped Driven Pendulum

A Classic Example: Logistic Map



Section 1

A Motivating Example



Damped Driven Pendulum

Newton’s Second Law for the damped driven pendulum:

0 +~0 + wi sinf = f cos(wt),

where w? = ¢ and f = L.

We can nondimensionalize (via the Buckingham IT theorem) the
differential equations using the following:

t = wot

G T ik gives 64 10+ sind f cos(wt)
, which gives = SInv = J CoOS(wt).

Fm gk q

w = w/wp



A Small Angle Approximation

* For small 0, sinf =~ 6, so the differential equation becomes
0+ %9 + 6 = fcos(wt).

® We know that the solution to this differential equation is the sum of
a transient solution that depends on initial conditions and a steady
state solution that is independent of initial solutions.



Section 2

Formal Theory



Definitions

(X, d) metric space. f:X — X.
1. A fixed point z € X is a point s.t. f(x) = z.
2. A periodic point z € X is a point s.t. In € N: f*(z) = z, where
the least such n is called the prime period.
3. The orbit of z under f (denoted Of(x)) is the sequence
z, f(z), -+, f*(x), - if f not invertible or --- , f~1(x), z, f(x),--
if f invertible.



Definitions (cont.)

Definition

f: X — X exhibit sensitive dependence on initial conditions if
36 > 0 s.t.

Vee X,e>03qy e X,NeN:z#£y,dzy) <ed(fN),Ny) >

Rmk. If a system possesses sensitive dependence, then numerical
computation becomes invalid, because the inaccuracies of numerical
computation become amplified. The true orbit may diverge from the
computed orbit.



Topological Transitivity

f: X — X is topologically transitive if 3z € X s.t. O(z) is dense in

|><

Proposition
If X has no isolated points, f: X — X continuous, then f topologically

transitive is equivalent to the following: for nonempty open sets
UV CX,then AN e N: fNU)NV #£0.

Rmk. Reverse direction is obvious (consider contrapositive). The
following is a proof of the forward direction.



Proof of ProEosition ioEtionali

" f topologically transitive ... In,m € Z : f"(x) € U, f™(z) € V. Note
that f"(x) e U - x € f~™(U) — f™(z) € f™™(U), hence
f™(z) e frm™U)NV # 0. If m > n, we are done since m —n € N.
Suppose #m > n : f™(x) € V. Then there exists decreasing sequence
(ng)i2, CZs.t.

1. ni < nVk

2. np — —o0 as k — 0o

3. f™(x) € VVk by denseness of Of(x) in X

4. fr(z) = f™(x) as k — oo
) € FrN) by ()
Im’ € (ng) :m <2m —n, f™ (z) € f7"™(U). Pick
¥ = from(fm (x)) € frm(fm(U)) = U. Then
frm—n—m'(g/) = fm(g) € V. Take N = 2m —n — m’ € N. Then Z
o eU — V(') € fNU), and fN¥(2') € V, hence fN(U)NV #0. B



Chaos

Definition (Devaney)

f: X — X continuous. f is chaotic if it is topologically transitive and
its periodic points are dense.

Theorem

Chaotic maps exhibit sensitive dependence on initial conditions, unless
the entire space consists of a single periodic orbit.

Rmk. The converse to the theorem is not true. A common
misunderstanding is that chaotic is equivalent to sensitive dependence on
initial conditions. But this is obviously false from definition of chaotic. Z



Proof of Theorem (Optional)

We will prove sensitive dependence for € € (0,d). Then the case € > §
follows immediately.
Unless the entire space consists of only a single periodic orbit, denseness
of periodic points implies that there exists at least 2 distinct periodic
orbits. Because periodic orbits are disjoint, dp, ¢ on separate periodic
orbits s.t. § := 3 mln ( (f"(p), f™(q)) > 0. We claim ¢ works.

n

Obs. Fix z € X. T hen the orbit of either p or ¢ is always at least a
distance of 45 from x. WLOG this point is q.

Take V := ﬂ F74(B2(f(q))). By previous proposition,
=0
Jk e N: fk(BO( NNV #0—3Fye Bo(x): ffy) eV



Proof of Theorem (cont.)

Suppose p € B?(z) and has period n. Consider
N:=n(%]+1)50<N-k<n.

By triangle inequality: d(f¥(p), f¥ () = d(p, ¥ (3)) >

d(z, fN* (@) — d(fN*(a), FN(y) — d(p.x) > 46 — 6 — & = 20, because
p e Be(z) C B3x) and fN(y) € FNH(V) C BN H(g)) (take

i = N — k in definition of V).

Thus, either d(f™(p), fN(z)) > 6 or d(fN (y), fN(x)) > 6

Recall that d(p,z) < € and d(y,z) <e. B



Example of Chaotic Mapping

Consider f:[-2,2] — [-2,2],z — 2|z| — 2.
® Denseness of periodic points: we can always find subinterval I of
length 1/2"2 s.t. f*(I) = [~2,2]. Thus, f™ has a fixed point on I.
* Topological transitivity: YU C [-2,2],In e N: f*(U) = [-2,2].
Then VV C [—2,2], f*(U)NV # 0.



Section 3

Lyapunov Exponent



Definition

Definition (Discrete System)

f: X — X. Let z,y be initial points in the phase space. The separation
vector d(n) is given by d(n) = f"(z) — f"(y). The Lyapunov exponent

A is defined as ) ;
= lim lim —1In I (n)||
n—=o0 |ls0)||=0n  [|6(0)]]

Definition (Continuous System)

f:R — X. Let z,y be two trajectories in the phase space. The
separation vector §(t) is given by §(t) = z(t) — y(¢t). The Lyapunov
exponent )\ is defined as

= lim lim —In .
= 00 5(O) 150 T 116(0)]]




Remarks

¢ Intuitively, this means that (for a discrete system) for n large,

1™ (@ +8) = [ ()] = de™.

¢ The Lyapunov Exponent measures the rate at which two initially
extremely close states grow over time.

e If A > 0, the distance between the two states grows over time, and is
a good indicator of chaotic systems.

e From this, it is obvious that A > 0 implies that f has sensitive
dependence on initially conditions.

e However, A > 0 does not necessarily imply chaos. Additional
information regarding the system is needed.



Maximal Lyapunov Exponent

* )\ may be different for different initial separation vectors §(0),
creating a spectrum.

e For example, consider the first order linear system @ = A% + f| (1),
with A constant. From differential equations, we can observe that
real parts of eigenvalues of A are Lyapunov exponents.

¢ We define the maximal Lyapunov exponent as the largest value
in the spectrum.



A Practical Formulation
° From [f"(z +6) — f"(2)| ~ §e’, isolate \: A~ L1n ‘w .

* Take § — 0, we apply definition of a derivative: A &~ L In |(f"(z))'|.

e Using chain rule:

n—1
(f"(@) = f (@) - 12 @) - (@) - ) = ] F @),
=0

n—1
where z; := f%(z). Substitute in (f"(z))": \ ~ lln H f'(x:)].
n
=0

n

| J REED

=0

1
® Taken - o0o: A= lim —1In
n—oo N

SRS
:nlin;oniz;ln’f/(xi)‘.

e For continuous systems, an equivalent formulation is

A= [ f(z)In]|f'(z)|dx.



Example

* Consider the doubling map on the unit circle: D : ST — S*
(equivalently D : [0,27) — [0,27)), 6 — 20 mod 27, where S™
denotes the unit sphere in (n + 1)-dimensional Euclidean space.

* D'(0) = 2V0 # 7. We can ignore the discontinuity at § = .

* Hence, A = lim me}f ;)| = lim —Zln2—1n2>0

n—oo N n—oo N

meaning D has senste dependence on 1n1t1a1 conditions.

e Exercise: prove that D is chaotic.



Section 4

Bifurcations



Attraction and Repulsion

Definition

A fixed point zg is attracting/stable if 3\ € (0,1) and open interval U
containing xg s.t. |f(x) — f(xo)| = |f(x) — xo| < Mz — zo|Vx € U.
Similarly, o is repelling/unstable if 3\ > 1 and open interval U
containing xg s.t. |f(x) — xo| > Az — xo|Vz € U.

Rmk. It follows from the definition of attraction that O¢(x) — xoVx € U.

Definition

A periodic point of period n is attracting (repelling) if it is an attracting
(repelling) fixed point of f.



A Practical Formulation

Theorem

f: X — X differentiable at fixed point xy € X. Let a := |f/(x¢)|. Then:
1. x is attracting iff a < 1.
2. xq is repelling iff a > 1.

Proof

We will prove (1). The proof of (2) is similar.

(<) a=f(xo) .Ve>030 >0:0< |z —x0| <0 — |%ﬁ:éw°)| €
(a —€,a+e¢€). Takee <1 —aand U = (xg — 0,9 + 9).

(—) Consider contrapositive: @ > 1 — not attracting.



Bifurcation

® Let A be a external parameter. Let f: X — X be a function
dependent on A. Varying A\ generates a family of functions, denoted
fx, where each function in the family uses a different value of .

® As we change f by varying A, there are certain points in the family
where the qualitative behavior of the function changes. These
changes are called bifurcations, and the values of the parameter A
where these changes occur are called bifurcation points.



Theorem: No Bifurcation

Theorem

Let fy be a family of functions. Suppose fy,(zo) = xo and f;\o (zo) # 1.
Then 4 interval [ s.t. xg € I, interval N s.t. A\g € N, and continuously
differentiable function p: N — I s.t. p(Ag) = g and fr(p(A)) = p(N).
Moreover, f has no other fixed points in I.

Proof
Consider function g(x,\) = fi(x) —z. We have g(zg, A\g) =0,

%(mo, Ao) = f;\o (x9) — 1 # 0. Apply the implicit function theorem on g
at (o, Ao).



Period Doubling Bifurcation: Definition

A family of functions f) undergoes a period doubling bifurcation at

=
1.
2.

Ao if 3 open interval I, € > 0 s.t.:

VA € [Ao — €, Ao + €], 3! fixed point py € I for fy.

VA € (Ao — € Aol, f has no cycles of period 2 in I and p) is
attracting (resp. repelling).

VA € (Ao, Ao + €), 3! 2-cycle g3, 43 in I that is attracting (resp.
repelling). Meantime, fixed point p) is repelling (resp. attracting).
As A — Ao, qf\ — Do



Section 5

A Second Look at Damped Driven Pendulum



Spontaneous Symmetry Breaking Bifurcation
W1
0+ ;9 + sinf = f cos(wt).

¢ Note that the pendulum equation is invariant under the
transformation 6 — —0,t — t — m/w. Thus, if 6;(¢) is a solution,
then 05(t) = —01(t — m/w) is also a solution.

¢ Physically, this means that the equations make no distinction
between the left and right sides of the vertical 8 = 0.

® We say the solution is symmetric if 6,(t) = 62(¢); otherwise,
spontaneous symmetry breaking has occurred. This symmetry
breaking produces an additional loop on the phase diagram.



Spontaneous Symmetry Breaking Bifurcation (cont.)

® At q =~ 1.246, the symmetry is broken.
® For ¢ < 1.246, the asymptotic solution (limit cycle) is symmetric.

® For q > 1.246, there exists a pair of stable, asymmetric asymptotic
solutions. The original limit cycle still exists but becomes unstable.
Depending on initial conditions, the trajectory converges to one of
the stable limit cycles.

® Demo!



Period Doubling Bifurcation

Demo!



Bifurcation Diagram

1. Find limit cycle for some ¢ and plot it in the 2D phase plane.

2. Construct is a 1D subspace (called the Poincare section) of the 2D
phase plane.

3. Take the intersection of the limit cycle and the Poincare section.

4. Plot data points where ¢ is the x coordinate and 6 is y coordinate.



Very Scuffed Bifurcation Diagram that I drew

224
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1.84
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1.4

1.3‘68 1.é70 1.3‘72 1.3‘74 1.376

Figure: Bifurcation Diagram of the Damped Driven Pendulum with

f=1,5w=2/3 and 1.367 < q < 1.377. § :



Section 6

A Classic Example: Logistic Map



Definition

A 1D map can be expressed in the form of x,11 = f(zy).

Definition

The logistic map is a family of functions
foR->Raxw— pz(l—z),ueR.

Specifically, we will investigate p > 0.



First Period Doubling Bifurcation

® Recall that fixed point z, is stable if | f’(z4)| < 1 and unstable if
|f/(zs)] > 1. Bifurcations usually occur at the marginally stable
point of | f/(z4)| = 1.

® The initial fixed points for small p are:
r=pr(l—z) =z =0,1-1/p. f, = p(l —22), so z. = 0 is stable
for0 < pu<1,and z, =1—1/p is stable for 1 < pu < 3.

* At u=3,z,=1-1/3=2/3, and
fu(@e) = p(1 = 22,) = 3(1 — 2-2/3) = —1, which is a marginally
stable point, causing the first bifurcation.

® The 2 periodic points (denoted xg and x) after the bifurcation must
both satisfy 2 = f,,(fu(x)) = f2(x), which is a quartic equation.
Note that 2 roots are the initial fixed points x, = 0,1 — 1/u, so
factor them out to get x1,x9 = i(u +14+/(+1)(p—3)). Z



Subsequent Period Doubling Bifurcations

® To find the value of u at which a bifurcation occurs (going from
period-2""! to period-2", we use (fﬁn_l)’(xi) = —1 for all fixed

points x; of f2n "

¢ Using the chain rule,

(F2) (o) = £(f3 21 OV 2 (o)) - f(Fiulwo)) £ (o)

|

= fﬂ($2n—171)f;2(562n—272) fu(ﬂ”l f# o) H f# 7)) =
on—1_1

IT r#(—21z)=-1
=0

* We know where the fixed points z; are for period-2""!, so we can
solve the equation as a function in pu.



Feigenbaum Constant

® [t turns out that if we take the ratio of the space between
consecutive period doubling bifurcation points of the logistic map, we
approach a value known as the Feigenbaum constant § = 4.6609...
(A006890 in OEIS).

® Let g, be the value of g of the n-th bifurcation. Let 6, := -Lo+l"9n

. T Gnt2—Qn+1
Then 6 := lim 6,
n—0o0

e This constant is universal for all 1D maps with a single locally
quadratic maximum.



Questions?



Further Reading

Theorems for sufficient conditions of saddle node bifurcations and
period doubling bifurcations

® Topological conjugacy and structural stability

Sharkovsky’s Theorem

Fractal dimension of strange attractors



Chaos is lawless behavior governed entirely by law.

— lan Stewart (1989)
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