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Introduction

Problem

How can computers, which are purely deterministic, generate ran-
dom numbers?

Before discussing this, let’s talk about randomness in nature.

Nature is full of random fluctuations: rate of radioactive decay, the
number of faces on a pebble, thermal noise, etc.

It is possible, in theory, to measure one such random event and use that
to generate a random number.

• This does pose some issues when it comes to generating massive
numbers, as well as being very inefficient and slow.

Thus, we must turn to algorithms to generate pseudorandom numbers.
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What Does "Pseudorandom" Even Mean?

A pseudorandom number is defined as a number that "appears to be
statistically random, despite having been produced by a completely
deterministic and repeatable process" (Wikipedia).

Basically, at first glance, a pseudorandom number appears random, but
after enough numbers have been generated, a clear pattern emerges.

We can visualize this using random walks, which show the progression
and relation between a set of generated numbers by plotting the distance
between two consecutive numbers in a set of numbers.
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Truly Random Visualization



Pseudorandom Visualization



Middle Squares Method

1. Start by choosing a seed. The last three digits of the Unix time as
I’m making this are 186, so that’s our seed number.

2. Now square this number and select as many middle digits as needed
(here we’re doing 3). 1862 = 34596, so our next seed is 459.

3. Repeat using this number as the new seed.

Thus, to generate random 3-digit numbers with a seed of 186, we get:
1862 = 34596 → 459, 4592 = 210681 → 068, 682 = 4624 → 624,
6242 = 389376 → 937, 9372 = 877969 → 796, and so on.

Once you get a repeat number, it’s easy to see that the numbers will start
to repeat from there. Some seeds will have a longer period than others.
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Linear Congruential Generator (LCG)
The LCG is another simple pseudorandom number generator.

The general LCG formula is:

Xn+1 = (aXn + c) mod m

Where:

• Xn is the current seed

• Xn+1 is the next pseudorandom number

• a is the multiplier

• c is the increment

• m is the modulus

• Assume all are non-zero
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Example LCG Computation
Given arbitrary parameters: m = 79, a = 43, c = 15, X0 = 21

1. X1 = (43 · 21 + 15) mod 79

43 · 21 = 903 → 903 + 15 = 918 → 918 mod 79 = 63

X1 = 63

2. X2 = (43 · 63 + 15) mod 79
43 · 63 = 2709 → 2709 + 15 = 2724 → 2724 mod 79 = 9

X2 = 9

3. X3 = (43 · 9 + 15) mod 79

43 · 9 = 387 → 387 + 15 = 402 → 402 mod 79 = 7

X3 = 7

We get a sequence of 21, 63, 9, 7, 0, 15, 34, and so on.



XorShift

General Process:

1. Pick a seed and convert it to binary.

2. Perform a bit shift either left or right and any amount.

3. Perform the Xor operation (⊕) on the numbers in steps 1 and 2.

4. Repeat steps 1 – 3 as many times as you want, reversing the
direction of the bit shift each time.

5. Convert the final number back to decimal.



Example with Arbitrary Seed 3146505

Step Result of Operation
Initial 0000 0000 0011 0000 0000 0011 0000 1001
Left Shift ≪ 13 0001 1000 0000 0000 0000 0000 0000 0000
Xor1: 12345⊕ (12345 ≪ 13) 0001 1000 0011 0000 0000 0011 0000 1001
Right Shift ≫ 17 0000 0000 0000 0001 1000 0000 0000 0000
Xor2: Previous ⊕ (Previous ≫ 17) 0001 1000 0011 0001 1000 0011 0000 1001
Left Shift ≪ 5 0011 0000 0110 0010 0000 0110 0010 0000
Xor3: Previous ⊕ (Previous ≪ 5) 0010 1000 0101 0011 1000 0101 0010 1001



Results

Iteration Initial Seed Operations Result
0 3146505 Initial seed 3146505
1 3146505 3146505⊕ (3146505 ≪ 13) 405799689
2 405799689 405799689⊕ (405799689 ≫ 17) 405897993
3 405897993 405897993⊕ (405897993 ≪ 5) 676562217

Pseudorandom number: 676562217



Summary

Middle Squares, LCG, and XorShift are three fairly simple pseudorandom
number generation algorithms.

All three can be completed in constant time, making them suitable for
real-time simulation number generation.

This does mean that neither is great for cryptographic purposes, which
often use many complex processes like entropy pools, block ciphers, and
sometimes even truly random numbers from physical processes as I
mentioned earlier. I highly recommend reading up on these as they are
very interesting!
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Questions?
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