[Knu22, Chapter 7.2.2.1] Algorithm X

Lou & Anakin

February 20, 2023

Outline

Review of Exact Cover

Data Structure

Algorithm X

Section 1

Review of Exact Cover

Exact Cover Problems

- The goal of Exact Cover is to select subsets of some list of items according to certain criterion:
 - Cover: Select subsets such that their **union** is all items
 - **Exact**: Each item is in **exactly one** subset
- In 1972, Richard Karp proved that Exact Cover, among 20 other problems, is NP-Complete
 - Easy to verify solutions in polynomial time
 - ▶ Hard to solve, best known solutions run in exponential time
 - Can simulate (or reduce) other problems in NP using Exact Cover

An Example of Exact Cover

Goal: Select rows such that each column in the selection has one 1

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

We can abstract this to options containing <u>items</u>

Answer: Select options 1, 2, and 3

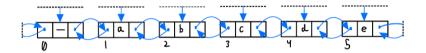
Recursively Solving Exact Cover Problems

In trying to solve the previous problem, you may have naturally found a recursive algorithm to find a solution

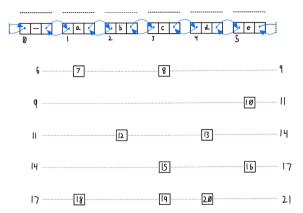
FINDCOVER($Options, Items, Cover, i$):	
1:	if <i>Cover</i> is a cover:
2:	terminate successfully
3:	if no option in $Options$ contains i :
4:	terminate unsuccessfully
5:	
6:	$I \leftarrow \text{options in } Options \text{ that contain } i$
7:	$Options \leftarrow Options \setminus I$
8:	for each O in I :
9:	$j \leftarrow$ an item still not covered
10:	FINDCOVER($Options, Cover \cup \{O\}, j$)

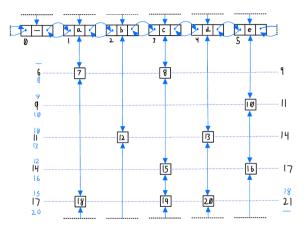
Section 2

Data Structure



• We create a linked list of our *items*, where each *item* will connect to a linked list representing its *options*

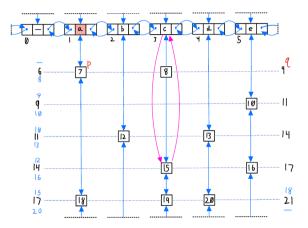




Section 3

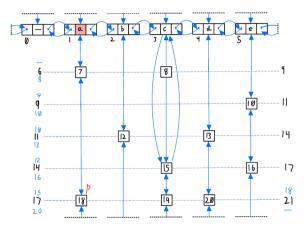
Algorithm X

• Removes the option a node p is from (so that option can no longer be chosen)



COVER(I)

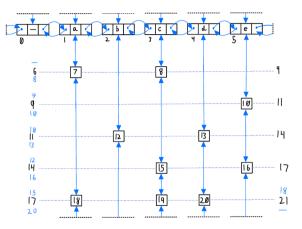
- Hides all options that could cover item i
 - \blacktriangleright Once we choose an option for i, we cannot choose any other options including i



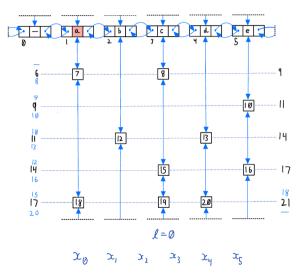
ALGORITHM X

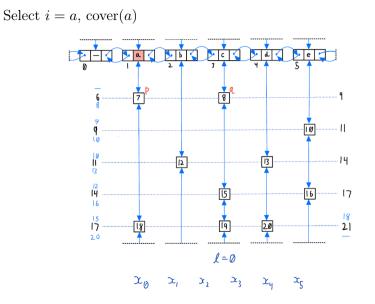
ALGORITHM X(Options. Items): Set up the dancing links, $\ell \leftarrow 0$ $\langle \langle \ell is our | evel \rangle \rangle$ 1: if all items have been covered: $2 \cdot$ Report success, visit answer, and **goto** Line 13 3: 4 $i \leftarrow \text{item not vet covered}$ COVER(i) then $x_{\ell} \leftarrow i.down$ 5: 6: if $x_{\ell} = i$: **goto** Line 12 $\langle \langle no \ options \ left \ to \ trv \rangle \rangle$ 7: 8. else: 9: $O \leftarrow$ option corresponding to x_{ℓ} COVER every item in O, then **goto** Line 2 10:UNCOVER items $\neq i$ in option corresponding to x_{ℓ} , goto Line 6 11: 12:UNCOVER(i)13: if $\ell = 0$, terminate, else $\ell = \ell - 1$, goto Line 11

Initialize Data Structure

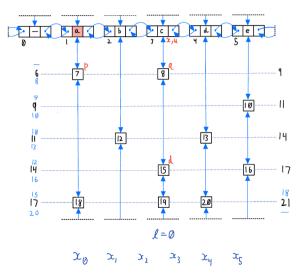


Initialize ℓ and x_{ℓ} 's

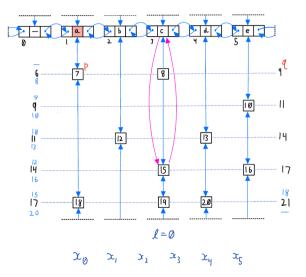




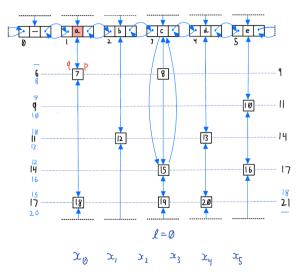
hide(7)

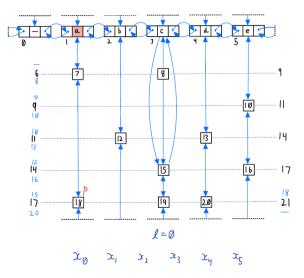


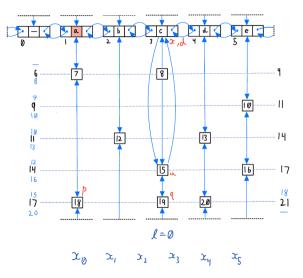
hide(7)

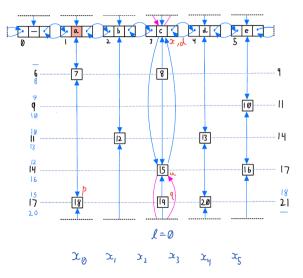


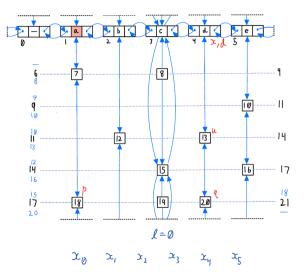
hide(7)

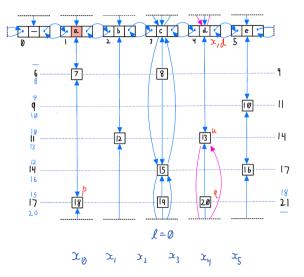


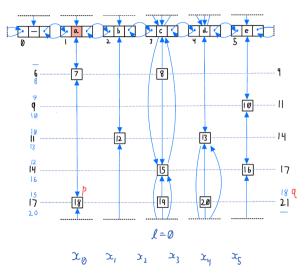


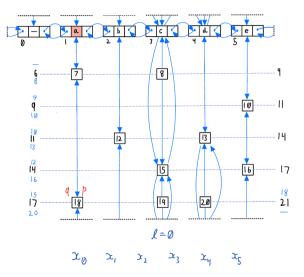




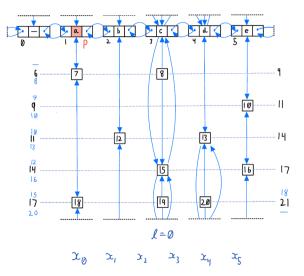




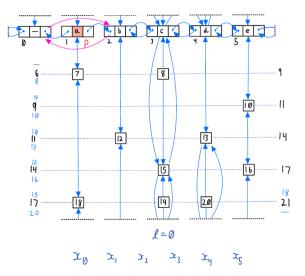




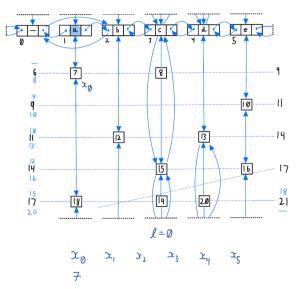
remove a



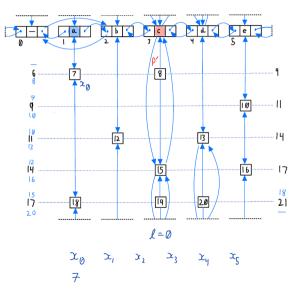
remove a



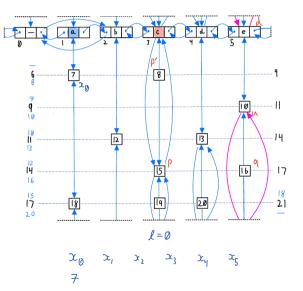
$$\ell = 0, x_0 = 7$$



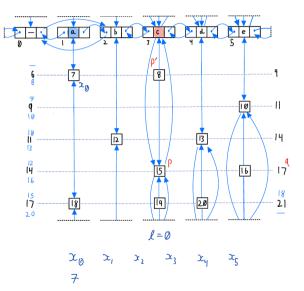
 $\operatorname{cover}(c)$



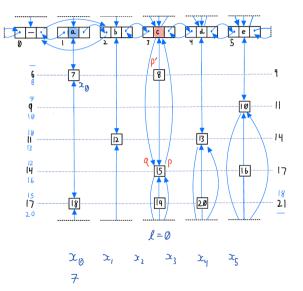
hide(15)



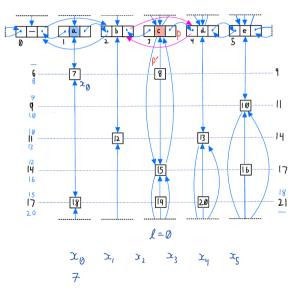
hide(15)



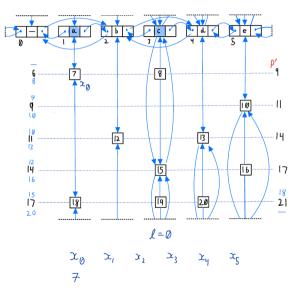
hide(15)



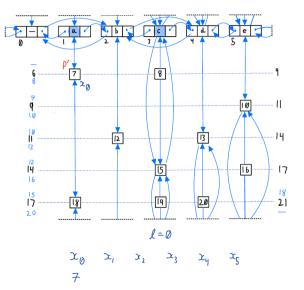
remove c



9 is a spacer, go back to 7



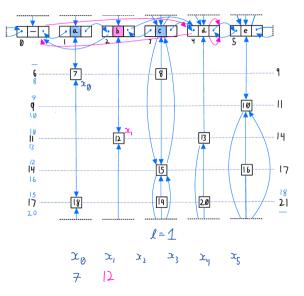
9 is a spacer, go back to 7



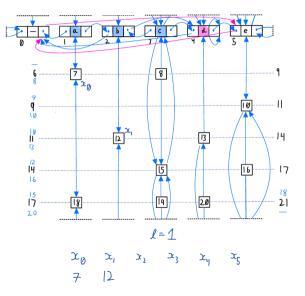
 $\ell = 1$, attempt to cover b



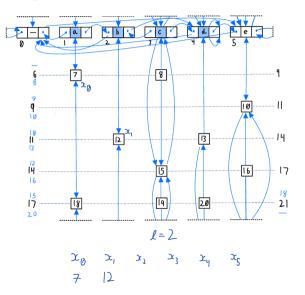
 $\ell = 1$, attempt to cover b



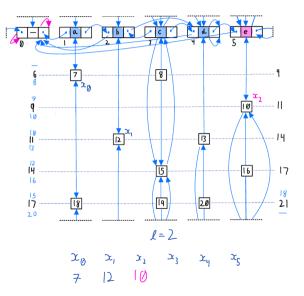
This option covers d as well



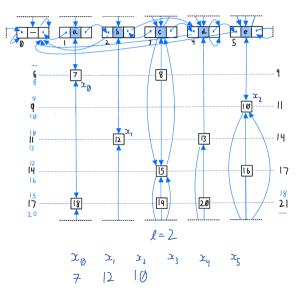
Only remaining item is e



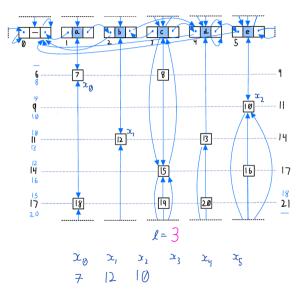
 $\operatorname{cover}(e)$



 $\operatorname{cover}(e)$



No options left to cover



Recovering The Answer

- Now our list contains links 7, 12, and 10.
- How do we recover what options we selected?
- Each node contains a field pointing to the corresponding option
 - ▶ Data structure design is half the battle

Questions?

Questions!

• Try to implement the Dancing Links and Algorithm X [Knu22, Chapter 7.2.2.1]

▶ If anyone does this, I'll put the code on cstheory.org

• Walk through your own instance of an exact cover problem like we did by following Knuth's algorithm and go further by also walking through the UNCOVER / UNHIDE routines

> Yes, we're serious. It is the **best** way to intuit this algorithm

Bibliography

Donald E. Knuth.

The Art of Computer Programming, Volume 4B: Combinatorial Algorithms, Part 2. Addison-Wesley Professional, 1st edition, 2022.

