(The Lemma that is Not Burnside's)
An Introduction to Burnside's Lemma
@nebu

Outline

Motivation
Groups
Symmetry Groups
Actions of Symmetry Groups
Counting Orbits and Burnside's Lemma
Examples of Usage

Section 1

Motivation

Consider the following problem

The sides of a square are to be colored by either red or blue. How many different arrangements exist?

Consider the following problem

The sides of a square are to be colored by either red or blue. How many different arrangements exist?

$$
2^{4}=16
$$

Since we have 4 objects to color, with two choices for each one.

What does "different" mean?

Are the following squares the "same" square or are they different?

What does "different" mean?

Are the following squares the "same" square or are they different?

Under rotation by $\pi / 2$, these are the same square.

Consider, then, this problem

The sides of a square are to be colored by either red or blue. How many different arrangements exist, if we treat colorings that can be obtained by rotation from another as identical?

Case-by-case solution

Permutation	Rotations different	Rotations identical
All sides red	1	1
All sides blue	1	1
One side red	4	1
One side blue	4	1
Two adjacent sides blue	4	1
Two opposite sides blue	2	1
Total	16	6

Extending the problem

What if there are now 3 colors?
What if the shape is now a hexagon?
...etc.

What if we want to color a cube $\mathrm{w} / 3$ colors?

We need a generalization: Burnside's lemma!

Burnside's Lemma

Formally, Burnside's lemma counts the number of orbits of a finite set acted upon by a finite group.

Burnside's Lemma

Formally, Burnside's lemma counts the number of orbits of a finite set acted upon by a finite group. (We'll get to this in a second.)

Intuitively, it provides a way to count distinct objects up to some equivalence relation

Burnside's Lemma

Formally, Burnside's lemma counts the number of orbits of a finite set acted upon by a finite group. (We'll get to this in a second.)

Intuitively, it provides a way to count distinct objects up to some equivalence relation, i.e., taking into account some symmetry.

Section 2

Groups

Groups

A group is a set G endowed with a binary operation • which has the following properties:

Groups

A group is a set G endowed with a binary operation • which has the following properties:

- Closure: For all $a \in G$ and $b \in G, a \cdot b \in G$.

Groups

A group is a set G endowed with a binary operation • which has the following properties:

- Closure: For all $a \in G$ and $b \in G, a \cdot b \in G$.
- Associativity: $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in G$.

Groups

A group is a set G endowed with a binary operation • which has the following properties:

- Closure: For all $a \in G$ and $b \in G, a \cdot b \in G$.
- Associativity: $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in G$.
- Existence of identity: There is a unique $e \in G$ such that $e \cdot a=a \cdot e=a$ for all $a \in G$.

Groups

A group is a set G endowed with a binary operation • which has the following properties:

- Closure: For all $a \in G$ and $b \in G, a \cdot b \in G$.
- Associativity: $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in G$.
- Existence of identity: There is a unique $e \in G$ such that $e \cdot a=a \cdot e=a$ for all $a \in G$.
- Existence of inverse: For all $a \in G$, there exists $a^{\prime} \in G$ such that $a \cdot a^{\prime}=a^{\prime} \cdot a=e$.

Groups are familiar objects!

- $(\mathbb{Z},+)$, the group of integers under addition. This group is also commutative, and is hence called an abelian group.

Groups are familiar objects!

- $(\mathbb{Z},+)$, the group of integers under addition. This group is also commutative, and is hence called an abelian group.
- Similarly, $(\mathbb{Q},+)$ is a group.

Groups are familiar objects!

- $(\mathbb{Z},+)$, the group of integers under addition. This group is also commutative, and is hence called an abelian group.
- Similarly, $(\mathbb{Q},+)$ is a group.
- $\left(\mathbb{Z}_{n},+\right)$, the group of integers modulo n under addition, is an abelian group.

Exercise

- Is $(\mathbb{C},+)$ a group?

Exercise

- Is $(\mathbb{C},+)$ a group?
- Is (\mathbb{Z}, \cdot) a group?

Exercise

- Is $(\mathbb{C},+)$ a group?
- Is (\mathbb{Z}, \cdot) a group?
- Is (\mathbb{Q}, \cdot) a group?

Exercise

- Is $(\mathbb{C},+)$ a group?
- Is (\mathbb{Z}, \cdot) a group?
- Is (\mathbb{Q}, \cdot) a group?
- Is $(\mathbb{Q} \backslash\{0\}, \cdot)$ a group?

Exercise

- Is $(\mathbb{C},+)$ a group?
- Is (\mathbb{Z}, \cdot) a group?
- Is (\mathbb{Q}, \cdot) a group?
- Is $(\mathbb{Q} \backslash\{0\}, \cdot)$ a group?
- (Trickier) Is $\left(\mathbb{Z}_{n}, \cdot\right)$ a group? What are its elements?

Section 3

Symmetry Groups

Symmetry Groups

Groups formed by the set of transformations that leave an object invariant with the group operation of composition.

Symmetry Groups

Groups formed by the set of transformations that leave an object invariant with the group operation of composition.

Some intuition first.

Symmetry Groups

Consider two squares. They are part of the same equivalence class (i.e., we consider them the same square) if we can get one from the other by using:

- Rotation
- Reflection
- Translation
- Or a combination of the three.

Symmetry Groups

Consider two squares. They are part of the same equivalence class (i.e., we consider them the same square) if we can get one from the other by using:

- Rotation
- Reflection
- Translation
- Or a combination of the two.

Visually

Set of symmetries: (id, $\left.r_{1}, r_{2}, r_{3}, f_{v}, f_{h}, f_{d}, f_{c}\right)$.

Visually

The set of symmetries are a set of functions. The functions are permutations of the vertices $(1,2,3,4)$.

Symmetries are Permutations are Bijective Functions

id is:

$$
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 & 2 & 3 & 4
\end{array}
$$

f_{d} is:

1	2	3	4
\downarrow	\downarrow	\downarrow	\downarrow
3	2	1	4

What is the group operation?

Remember, we can combine reflections and rotations to still have the same object.

The group operation is thus function composition.

What is the group operation?

Remember, we can combine reflections and rotations to still have the same object.

The group operation is thus function composition. For instance, $f_{h} \circ r_{3}$ means:

- Rotate by $3 \pi / 2$.
- Reflect across the horizontal.

Turns out this is equivalent to f_{d}.

Is this really a group?

Check for yourself! (Spoiler: it is.)
Is it abelian?

Examples

- "Cyclic" groups C_{n} : consists of all rotations by multiples of $2 \pi / n$ around a point. Order: n.

Examples

- "Cyclic" groups C_{n} : consists of all rotations by multiples of $2 \pi / n$ around a point. Order: n.
- "Dihedral" groups D_{n} : consist of all rotations in C_{n} along with reflections across the n axes passing through the point. Order: $2 n$.

Examples

- "Cyclic" groups C_{n} : consists of all rotations by multiples of $2 \pi / n$ around a point. Order: n.
- "Dihedral" groups D_{n} : consist of all rotations in C_{n} along with reflections across the n axes passing through the point. Order: $2 n$.
- The group we just looked at was D_{4}.

Examples

- "Cyclic" groups C_{n} : consists of all rotations by multiples of $2 \pi / n$ around a point. Order: n.
- "Dihedral" groups D_{n} : consist of all rotations in C_{n} along with reflections across the n axes passing through the point. Order: $2 n$.
- The group we just looked at was D_{4}.
- There are many, many more...

Section 4

Actions of Symmetry Groups

Group Actions

A group G with identity e can act on a set X.

Group Actions

A group G with identity e can act on a set X.
The (left) group action, α, is a function:

$$
\alpha: G \times X \rightarrow X
$$

Group Actions

A group G with identity e can act on a set X.
The (left) group action, α, is a function:

$$
\alpha: G \times X \rightarrow X
$$

Satisfying

1. Identity: $\alpha(e, x)=x$ for all $x \in X$
2. Compatibility: $\alpha(g, \alpha(h, x))=\alpha(g \cdot h, x)$ for all $g, h \in G$ and $x \in X$

Group Actions

1. Identity: $\alpha(e, x)=x$ for all $x \in X$
2. Compatibility: $\alpha(g, \alpha(h, x))=\alpha(g \cdot h, x)$ for all $g, h \in G$ and $x \in X$

We often write $g x$ instead of $\alpha(g, x)$, to get:

1. Identity: $e x=x$
2. Compatibility: $g(h x)=(g h) x$

What are G and X

In the case of our square,

- G is the group of symmetries $\left(C_{4}\right)$
- X is the set of all possible colorings of the square.

Going back to our square...

This is the result of applying r_{1} on the square:

Fixed Points

For $g \in G$, a fixed point is an $x \in X$ such that action by g leaves it unchanged, i.e., $g x=x$.

Fixed Points

For $g \in G$, a fixed point is an $x \in X$ such that action by g leaves it unchanged, i.e., $g x=x$.

The set of all fixed points of g is denoted $\operatorname{fix}(g)$ or (I dislike this notation) X^{g} :

$$
\operatorname{fix}(g)=\{x \in X: g x=x\}
$$

Orbits

For $x \in X$, an orbit is the set of elements to which we can move x via action by G :

$$
G x=\operatorname{orb}(x)=\{g x: g \in G\}
$$

Orbits Partition X

$G x$ is clearly a subset of X. Consider $x^{\prime} \in G x$.

- It must be true that $G x=G x^{\prime}$.
- By contradiction,
- Let there be an element $y \in G x^{\prime}$ and $y \notin G x$.
- $y=g_{1} x^{\prime}$, but
$x^{\prime}=g_{2} x \Longrightarrow y=g_{1}\left(g_{2}\right) x \Longrightarrow y=\left(g_{1} g_{2}\right) x \Longrightarrow y \in G x$, for some $g_{1}, g_{2} \in G$.

Orbits Partition X

$G x$ is clearly a subset of X. Consider $x^{\prime} \in G x$.

- It must be true that $G x=G x^{\prime}$.
- By contradiction,
- Let there be an element $y \in G x^{\prime}$ and $y \notin G x$.
- $y=g_{1} x^{\prime}$, but
$x^{\prime}=g_{2} x \Longrightarrow y=g_{1}\left(g_{2}\right) x \Longrightarrow y=\left(g_{1} g_{2}\right) x \Longrightarrow y \in G x$, for some $g_{1}, g_{2} \in G$.
- Thus, the concept of "number of orbits" of X makes sense.

What we really want to do

Is count orbits!

- Consider X, the set of all possible colorings. This is acted on by group G, some sort of symmetry group.

What we really want to do

Is count orbits!

- Consider X, the set of all possible colorings. This is acted on by group G, some sort of symmetry group.
- Consider the orbit of some $x \in X$. All elements in this orbit were reached by rotating/reflecting x in some way.

What we really want to do

Is count orbits!

- Consider X, the set of all possible colorings. This is acted on by group G, some sort of symmetry group.
- Consider the orbit of some $x \in X$. All elements in this orbit were reached by rotating/reflecting x in some way.
- A single orbit thus represents a single unique coloring.

What we really want to do

Is count orbits!

- Consider X, the set of all possible colorings. This is acted on by group G, some sort of symmetry group.
- Consider the orbit of some $x \in X$. All elements in this orbit were reached by rotating/reflecting x in some way.
- A single orbit thus represents a single unique coloring.
- The total number of orbits is the total number of colorings with the symmetry constraint.

Visually: Yellow Box is an Orbit (Identical Coloring)

One Last Thing: Stabilizers

Closely related to fixed points: it is the set of all elements in g that leave $x \in X$ fixed:

$$
\operatorname{stab}(x)=\{g \in G: g x=x\}
$$

One Last Thing: Stabilizers

Closely related to fixed points: it is the set of all elements in g that leave $x \in X$ fixed:

$$
\operatorname{stab}(x)=\{g \in G: g x=x\}
$$

Contrast with fixed points of $g \in G$:

$$
\operatorname{fix}(g)=\{x \in X: g x=x\}
$$

Section 5

Counting Orbits and Burnside's Lemma

Line up the elements of X

Same color means same orbit.

Draw G. Draw a line between g and x if $g x=x$.

Criterion: $g * x=x$

Let's try to count the number of lines

We can count number of lines exiting each g

Formally

Recall,

$$
\operatorname{fix}(g)=\{x \in X: g x=x\}
$$

So our total number of spaghetti is

$$
\sum_{g \in G}|\operatorname{fix}(g)|
$$

But we can also count outgoing lines from each x

Formally

Recall,

$$
\operatorname{stab}(x)=\{g \in G: g x=x\}
$$

Formally

Recall,

$$
\operatorname{stab}(x)=\{g \in G: g x=x\}
$$

All x in the same orbit have the same number of stablizers, so the total number of outgoing spaghetti from an orbit is:

$$
|\operatorname{stab}(x)||\operatorname{orb}(x)|
$$

Orbit-Stabilizer Theorem

$$
|G|=|\operatorname{stab}(x)||\operatorname{orb}(x)|
$$

Thus

Putting it Together

$$
\begin{aligned}
\# \text { of } \operatorname{orbits}(|G|) & =\sum_{g \in G}|\operatorname{fix}(g)| \\
\Longrightarrow \# \text { of orbits } & =\frac{1}{|G|} \sum_{g \in G}|\operatorname{fix}(g)|
\end{aligned}
$$

Burnside's Lemma

$$
\# \text { of orbits }=\frac{1}{|G|} \sum_{g \in G}|\operatorname{fix}(g)|
$$

Section 6

Examples of Usage

Original Problem

The sides of a square are to be colored by either red or blue. How many different arrangements exist, if we treat colorings that can be obtained by rotation from another as identical?

Using Burnside's Lemma

The group is C_{4}. Thus, $|G|=4$.

$$
\# \text { of orbits }=\frac{1}{4} \sum_{g \in G}|\operatorname{fix}(g)|
$$

Using Burnside's Lemma

The group is C_{4}. Thus, $|G|=4$.

$$
\# \text { of orbits }=\frac{1}{4} \sum_{g \in G}|\operatorname{fix}(g)|
$$

The number of fixed points for each $g \in G$ is:

- id: each of $2^{4}=16$ possible squares are unique.

Using Burnside's Lemma

The group is C_{4}. Thus, $|G|=4$.

$$
\# \text { of orbits }=\frac{1}{4} \sum_{g \in G}|\operatorname{fix}(g)|
$$

The number of fixed points for each $g \in G$ is:

- id: each of $2^{4}=16$ possible squares are unique.
- r_{1} : We want squares that are invariant under rotation by $\pi / 2$. There are exactly two: all sides red and all sides blue.

Using Burnside's Lemma

The group is C_{4}. Thus, $|G|=4$.

$$
\# \text { of orbits }=\frac{1}{4} \sum_{g \in G}|\operatorname{fix}(g)|
$$

The number of fixed points for each $g \in G$ is:

- id: each of $2^{4}=16$ possible squares are unique.
- r_{1} : We want squares that are invariant under rotation by $\pi / 2$. There are exactly two: all sides red and all sides blue.
- r_{3} : Rotation by $3 \pi / 2$, the same two.

Using Burnside's Lemma

The group is C_{4}. Thus, $|G|=4$.

$$
\# \text { of orbits }=\frac{1}{4} \sum_{g \in G}|\operatorname{fix}(g)|
$$

The number of fixed points for each $g \in G$ is:

- id: each of $2^{4}=16$ possible squares are unique.
- r_{1} : We want squares that are invariant under rotation by $\pi / 2$. There are exactly two: all sides red and all sides blue.
- r_{3} : Rotation by $3 \pi / 2$, the same two.
- r_{2} : Rotation by π. The opposite sides must be the same color for a fixed point. We thus have $2^{2}=4$.

Using Burnside's Lemma

The group is C_{4}. Thus, $|G|=4$.

$$
\# \text { of orbits }=\frac{1}{4} \sum_{g \in G}|\operatorname{fix}(g)|
$$

The number of fixed points for each $g \in G$ is:

- id: each of $2^{4}=16$ possible squares are unique.
- r_{1} : We want squares that are invariant under rotation by $\pi / 2$. There are exactly two: all sides red and all sides blue.
- r_{3} : Rotation by $3 \pi / 2$, the same two.
- r_{2} : Rotation by π. The opposite sides must be the same color for a fixed point. We thus have $2^{2}=4$.

Applying Burnside's

$$
\begin{gathered}
\# \text { of orbits }=\frac{1}{4} \sum_{g \in G}|\operatorname{fix}(g)| \\
\# \text { of orbits }=\frac{1}{4}(16+2+2+4)=\frac{24}{4}=6
\end{gathered}
$$

Matches our casework!

Burnside's on the Cube

Want to color this cube with 3 colors. Rotations are the same cube.

Burnside's on the Cube

$|G|=24$. The fixed points are:

- Identity: 3^{6}, all are fixed points.
- $\pi / 2$ rotations: 4 lateral faces same color, can select axis faces. $2 \times 3 \times 3^{3}$ (accounting for $3 \pi / 2$ as well), along each axis.
- π : 2 uniquely colored lateral faces, top and bottom: 3×3^{4} for each axis.
- $\pi / 3$ Rotations about 8 diagonal axes: 8×3^{2} : each corner fixes a color.
- π Rotations about 6 edge midpoint axes: 6×3^{3} : each edge fixes a color for a pair of faces.

Burnside's on the Cube

Plugging into Burnside's, we get:

$$
\# \text { of orbits }=\frac{1}{24}\left(3^{6}+6 \cdot 3^{3}+3 \cdot 3^{4}+8 \cdot 3^{2}+6 \cdot 3^{3}\right)=57
$$

Credits

- Mathemaniac on YouTube for the graphics: https://www.youtube.com/watch?v=6kfbotHLOfs. The channel also has an excellent proof of the orbit-stabilizer theorem.

