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Motivation



Consider the following problem

The sides of a square are to be colored by either red or blue. How many
different arrangements exist?

24 = 16

Since we have 4 objects to color, with two choices for each one.
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What does “different” mean?

Are the following squares the “same” square or are they different?

Under rotation by π/2, these are the same square.
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Are the following squares the “same” square or are they different?
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Consider, then, this problem

The sides of a square are to be colored by either red or blue. How many
different arrangements exist, if we treat colorings that can be obtained
by rotation from another as identical?



Case-by-case solution

Permutation Rotations different Rotations identical
All sides red 1 1
All sides blue 1 1
One side red 4 1
One side blue 4 1
Two adjacent sides blue 4 1
Two opposite sides blue 2 1
Total 16 6



Extending the problem

What if there are now 3 colors?

What if the shape is now a hexagon?

…etc.



What if we want to color a cube w/3 colors?



We need a generalization: Burnside’s lemma!



Burnside’s Lemma

Formally, Burnside’s lemma counts the number of orbits of a finite set
acted upon by a finite group.
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Groups



Groups

A group is a set G endowed with a binary operation · which has the
following properties:

• Closure: For all a ∈ G and b ∈ G, a · b ∈ G.
• Associativity: a · (b · c) = (a · b) · c for all a, b, c ∈ G.
• Existence of identity: There is a unique e ∈ G such that

e · a = a · e = a for all a ∈ G.
• Existence of inverse: For all a ∈ G, there exists a′ ∈ G such that

a · a′ = a′ · a = e.
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Groups are familiar objects!

• (Z, +), the group of integers under addition. This group is also
commutative, and is hence called an abelian group.

• Similarly, (Q, +) is a group.
• (Zn, +), the group of integers modulo n under addition, is an

abelian group.
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Exercise

• Is (C, +) a group?
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• Is (Q, ·) a group?
• Is (Q \ {0}, ·) a group?
• (Trickier) Is (Zn, ·) a group? What are its elements?
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Symmetry Groups



Symmetry Groups

Groups formed by the set of transformations that leave an object
invariant with the group operation of composition.



Symmetry Groups

Groups formed by the set of transformations that leave an object
invariant with the group operation of composition.

Some intuition first.



Symmetry Groups

Consider two squares. They are part of the same equivalence class (i.e.,
we consider them the same square) if we can get one from the other by
using:

• Rotation
• Reflection
• Translation
• Or a combination of the three.



Symmetry Groups

Consider two squares. They are part of the same equivalence class (i.e.,
we consider them the same square) if we can get one from the other by
using:

• Rotation
• Reflection
• Translation
• Or a combination of the two.



Visually

Set of symmetries: (id, r1, r2, r3, fv, fh, fd, fc).



Visually

The set of symmetries are a set of functions. The functions are
permutations of the vertices (1, 2, 3, 4).



Symmetries are Permutations are Bijective Functions

id is:

1 2 3 4
↓ ↓ ↓ ↓
1 2 3 4

fd is:

1 2 3 4
↓ ↓ ↓ ↓
3 2 1 4



What is the group operation?

Remember, we can combine reflections and rotations to still have the
same object.

The group operation is thus function composition.

For instance, fh ◦ r3 means:
• Rotate by 3π/2.
• Reflect across the horizontal.

Turns out this is equivalent to fd.



What is the group operation?

Remember, we can combine reflections and rotations to still have the
same object.

The group operation is thus function composition.
For instance, fh ◦ r3 means:

• Rotate by 3π/2.
• Reflect across the horizontal.

Turns out this is equivalent to fd.



Is this really a group?

Check for yourself! (Spoiler: it is.)

Is it abelian?



Examples

• “Cyclic” groups Cn: consists of all rotations by multiples of 2π/n
around a point. Order: n.

• “Dihedral” groups Dn: consist of all rotations in Cn along with
reflections across the n axes passing through the point. Order: 2n.

• The group we just looked at was D4.
• There are many, many more…
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Actions of Symmetry Groups



Group Actions

A group G with identity e can act on a set X.

The (left) group action, α, is a function:

α : G × X → X

Satisfying
1. Identity: α(e, x) = x for all x ∈ X
2. Compatibility: α(g, α(h, x)) = α(g · h, x) for all g, h ∈ G and x ∈ X
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Group Actions

1. Identity: α(e, x) = x for all x ∈ X
2. Compatibility: α(g, α(h, x)) = α(g · h, x) for all g, h ∈ G and x ∈ X

We often write gx instead of α(g, x), to get:
1. Identity: ex = x
2. Compatibility: g(hx) = (gh)x



What are G and X

In the case of our square,
• G is the group of symmetries (C4)
• X is the set of all possible colorings of the square.



Going back to our square…

This is the result of applying r1 on the square:



Fixed Points

For g ∈ G, a fixed point is an x ∈ X such that action by g leaves it
unchanged, i.e., gx = x.

The set of all fixed points of g is denoted fix(g) or (I dislike this
notation) Xg:

fix(g) = {x ∈ X : gx = x}



Fixed Points

For g ∈ G, a fixed point is an x ∈ X such that action by g leaves it
unchanged, i.e., gx = x.

The set of all fixed points of g is denoted fix(g) or (I dislike this
notation) Xg:
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Orbits

For x ∈ X, an orbit is the set of elements to which we can move x via
action by G:

Gx = orb(x) = {gx : g ∈ G}



Orbits Partition X

Gx is clearly a subset of X. Consider x′ ∈ Gx.
• It must be true that Gx = Gx′.
• By contradiction,

▶ Let there be an element y ∈ Gx′ and y ̸∈ Gx.
▶ y = g1x′, but

x′ = g2x =⇒ y = g1(g2)x =⇒ y = (g1g2)x =⇒ y ∈ Gx, for some
g1, g2 ∈ G.

• Thus, the concept of “number of orbits” of X makes sense.
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What we really want to do

Is count orbits!

• Consider X, the set of all possible colorings. This is acted on by
group G, some sort of symmetry group.

• Consider the orbit of some x ∈ X. All elements in this orbit were
reached by rotating/reflecting x in some way.

• A single orbit thus represents a single unique coloring.
• The total number of orbits is the total number of colorings with

the symmetry constraint.



What we really want to do

Is count orbits!

• Consider X, the set of all possible colorings. This is acted on by
group G, some sort of symmetry group.

• Consider the orbit of some x ∈ X. All elements in this orbit were
reached by rotating/reflecting x in some way.

• A single orbit thus represents a single unique coloring.
• The total number of orbits is the total number of colorings with

the symmetry constraint.



What we really want to do

Is count orbits!

• Consider X, the set of all possible colorings. This is acted on by
group G, some sort of symmetry group.

• Consider the orbit of some x ∈ X. All elements in this orbit were
reached by rotating/reflecting x in some way.

• A single orbit thus represents a single unique coloring.

• The total number of orbits is the total number of colorings with
the symmetry constraint.



What we really want to do

Is count orbits!

• Consider X, the set of all possible colorings. This is acted on by
group G, some sort of symmetry group.

• Consider the orbit of some x ∈ X. All elements in this orbit were
reached by rotating/reflecting x in some way.

• A single orbit thus represents a single unique coloring.
• The total number of orbits is the total number of colorings with

the symmetry constraint.



Visually: Yellow Box is an Orbit (Identical Coloring)



One Last Thing: Stabilizers

Closely related to fixed points: it is the set of all elements in g that
leave x ∈ X fixed:

stab(x) = {g ∈ G : gx = x}

Contrast with fixed points of g ∈ G:

fix(g) = {x ∈ X : gx = x}
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Counting Orbits and Burnside’s Lemma



Line up the elements of X

Same color means same orbit.



Draw G. Draw a line between g and x if gx = x.



Let’s try to count the number of lines



We can count number of lines exiting each g



Formally

Recall,
fix(g) = {x ∈ X : gx = x}

So our total number of spaghetti is∑
g∈G

|fix(g)|



But we can also count outgoing lines from each x



Formally

Recall,
stab(x) = {g ∈ G : gx = x}

All x in the same orbit have the same number of stablizers, so the total
number of outgoing spaghetti from an orbit is:

|stab(x)||orb(x)|



Formally

Recall,
stab(x) = {g ∈ G : gx = x}

All x in the same orbit have the same number of stablizers, so the total
number of outgoing spaghetti from an orbit is:

|stab(x)||orb(x)|



We then have



Orbit-Stabilizer Theorem

|G| = |stab(x)||orb(x)|



Thus



Putting it Together

# of orbits(|G|) =
∑
g∈G

|fix(g)|

=⇒ # of orbits = 1
|G|

∑
g∈G

|fix(g)|



Burnside’s Lemma

# of orbits = 1
|G|

∑
g∈G

|fix(g)|
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Examples of Usage



Original Problem

The sides of a square are to be colored by either red or blue. How many
different arrangements exist, if we treat colorings that can be obtained
by rotation from another as identical?



Using Burnside’s Lemma
The group is C4. Thus, |G| = 4.

# of orbits = 1
4
∑
g∈G

|fix(g)|

The number of fixed points for each g ∈ G is:
• id: each of 24 = 16 possible squares are unique.
• r1: We want squares that are invariant under rotation by π/2.

There are exactly two: all sides red and all sides blue.
• r3: Rotation by 3π/2, the same two.
• r2: Rotation by π. The opposite sides must be the same color for a

fixed point. We thus have 22 = 4.
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Applying Burnside’s

# of orbits = 1
4
∑
g∈G

|fix(g)|

# of orbits = 1
4(16 + 2 + 2 + 4) = 24

4 = 6

Matches our casework!



Burnside’s on the Cube
Want to color this cube with 3 colors. Rotations are the same cube.



Burnside’s on the Cube

|G| = 24. The fixed points are:
• Identity: 36, all are fixed points.
• π/2 rotations: 4 lateral faces same color, can select axis faces.

2 × 3 × 33 (accounting for 3π/2 as well), along each axis.
• π: 2 uniquely colored lateral faces, top and bottom: 3 × 34 for each

axis.
• π/3 Rotations about 8 diagonal axes: 8 × 32: each corner fixes a

color.
• π Rotations about 6 edge midpoint axes: 6 × 33: each edge fixes a

color for a pair of faces.



Burnside’s on the Cube

Plugging into Burnside’s, we get:

# of orbits = 1
24

(
36 + 6 · 33 + 3 · 34 + 8 · 32 + 6 · 33) = 57



Credits

• Mathemaniac on YouTube for the graphics:
https://www.youtube.com/watch?v=6kfbotHL0fs. The channel
also has an excellent proof of the orbit-stabilizer theorem.

https://www.youtube.com/watch?v=6kfbotHL0fs
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