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Computing Fibonacci



Anakin

• Math Major
• SIGPwny Crypto1 Gang + Admin team
• CA for CS 173 + CS 475
• Research with Sam

1Not that one, the other one



Sam

• Summer Amazon Intern
• CS Major
• Doing CS 374 Course Dev
• Doing Theory Research with Sariel Har-Peled
• Research with Anakin



Lou

• CS Major
• Current CS 225 CA (past CS 125 and 374 CA)
• Senior, selling soul to finance after this semester



Aditya

• ECE/Math double degree.
• Quantum error correction research w/Prof. Milenkovic.
• CA for ECE 391.
• Other interests: FP, PL, Crypto.



Hassam

• Intern at Amazon over the summer
• CS Major (takes math classes for fun ???)
• SIGPwny Crypto Gang + Admin team + Infra lead
• CA for CS 233, CS 173
• Compiler research



Phil

• CS/Ling Major, Senior
• CA for CS 233
• SIGecom - game theory, economics, and computation



Section 2

Computing Fibonacci



Recursive

Fn =


0 n = 0

1 n = 1

Fn−1 + Fn−2 n ≥ 2

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

0 1 1 2 3 5 8 13 21 34 55 89 144 233



Recursive

Fn =


0 n = 0

1 n = 1

Fn−1 + Fn−2 n ≥ 2

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

0 1 1 2 3 5 8 13 21 34 55 89 144 233



Recursive Computation

Figure: From [Eri19]



Can We Do Better?
We can use 12 multiplications to compute x13 as follows:

x→ x2 → x3 → x4 → x5 → x6 → x7 → x8 → x9 → x10 → x11 → x12 → x13

But if we first compute powers as such

x2 ← x · x
x4 ← x2 · x2

x8 ← x4 · x4

Using these we compute x8 · x4 · x1 = x13 in just 5 total multiplications.
We can generalize this using binary

1 1 0 1
8 4 2 1
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Building an Algorithm

13 = 8 + 4 + 1 = 11012

Step Bit Power Result
0 1

1 1 x x

2 0 x2 x

3 1 x4 x5

4 1 x8 x13
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Building an Algorithm

13 = 8 + 4 + 1 = 11012

Step Bit Power Result
0 1

1 1 x x

2 0 x2 x

3 1 x4 x5

4 1 x8 x13



power(x, n):
1: curr ← 1
2: for i← 1 . . . n :
3: curr ← curr ∗ x
4: return curr

squareMultPower(x, n):
1: res← 1
2: power ← x
3: for bit in binary(n):
4: if bit = 1:
5: res← res ∗ power
6: power ← power ∗ power
7: return res



power(x, n):
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2: for i← 1 . . . n :
3: curr ← curr ∗ x
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Matrices

We have the following two linear equations

Fn = Fn−1 + Fn−2

Fn−1 = Fn−1

We can represent this as follows using matrices[
Fn

Fn−1

]
=

[
1 1
1 0

] [
Fn−1

Fn−2

]
=

[
1 1
1 0

]2 [
Fn−2

Fn−3

]
= · · · =

[
1 1
1 0

]n [
1
0

]
We can use squareMultPower to compute this!
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Combinatorics

This semester is going to be mainly focused on combinatorics. So let’s
look at one of the most beautiful combinatorial objects in all of
mathematics: Pascal’s Triangle



Pascal’s Triangle



Binomial Coefficients and Pascal’s Triangle

• Blaise Pascal first discussed his triangle in his Traité du Triangle
Arithmétique [Pas65]
▶ One of the first works on probability theory

• Binomial coefficients were first discussed in detail in India in the
tenth–century [Knu97]
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Binomial Coefficients

• “The number of ways to choose k items from n distinct items”(
n

k

)
=

n!

k!(n− k)!

• “The number of ways to not choose n− k from n distinct items”(
n

k

)
=

(
n

n− k

)
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Pascal’s Triangle
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A Pattern in the Triangle



A Pattern in the Triangle



Proving the Pattern

Claim:
⌊n2 ⌋∑
k=0

(
n− k

k

)
= Fn+1

We are going to prove this by a combinatorial argument



Staircases

Question: How many ways are there to climb a staircase going one or
two steps at a time?

invisible text to make the next slide transition smoother



Staircases

Question: How many ways are there to climb a staircase going one or
two steps at a time?

We can think of this recursively!



Steps to Compute Steps

• Let the starting step be step 0. Assuming we are on step n ≥ 2,
how did we get here?

▶ Either we took a single step from step n− 1
▶ Or we took two steps from step n− 2

• Combining the number of ways to get to step n− 1 with the
number of ways to get to step n− 2 yields the number of ways to
get to step n

• Sn = Sn−1 + Sn−2

▶ How many ways are there to get to step 0? Exactly 1 (S0 = 1)
▶ How many ways are there to get to step 1? Exactly 1 (S1 = 1)

• Sn = Fn+1
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Making Choices

• There is another angle to the staircase problem

• We can just choose which steps to take two steps from, and fill the
rest with single steps
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Placing Steps

• We have to choose where to place our steps of size 2

• If we have n steps, how many ways can we place k steps of size 2?

(
n− k

k

)
ways

• How many possible values of k are there?⌊n
2

⌋

Thus,
⌊n2 ⌋∑
k=0

(
n− k

k

)
= Sn = Fn+1
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Questions?



[Combinatorics] has a relation to almost every species of useful knowledge that the

mind of man can be employed upon.

— JAMES BERNOULLI, Ars Conjectandi (“The Art of Conjecturing”) (1713)
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