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Langford Pairing for n= 4
[4,1, 3,1, 2,4, 3,2] or [2,3, 4,2, 1,3, 1,4]

Non-existence of Langford Pairings for n= 1 or n= 2
If n= 1, then we have no other numbers to put between the two 1’s and so no pairing can exist. If n= 2, then the two

2’s must be at the ends of the list: [2,_,_, 2].

Program for Generating a Single Langford Pairing
See the function generate_single_pairing on GitHub

Exercise 6a of [Knu11, Chapter 7]
Note to the reader: I recommend you implement these formulas using Sympy (ask in the Discord for how to use it) and

compute the polynomials for small n to gain intuition. These formulas are not intuitive, especially how everything cancels

out. This is common in combinatorics when trying to deal with polynomials to count objects.

Let Ln be the number of Langford pairings for n, not counting reversals as distinct pairings, and let

f (x1, . . . , x2n) =
n∏

k=1

 

xk xn+k

2n−k−1
∑

j=1

x j x j+k+1

!

.

We want to show that
∑

x1,...,x2n∈{−1,1 }

f (x1, . . . , x2n) = 22n+1 Ln.

Think of each x i as a location variable for the resulting list. For n= 3, f (x1, . . . , x6) is equal to

x1 x4

�

x1 x3 + x2 x4 + x3 x5 x4 x6

�

· x2 x5

�

x1 x4 + x2 x5 + x3 x6

�

· x3 x6(x1 x5 + x2 x6)

So each of the terms in the parentheses correspond to possible positions for various numbers. For example
�

x1 x3 + x2 x4 + x3 x5 x4 x6

�

lists out the valid positions for the two 1’s. Expanding this sum out yields terms such that x2
2 x2

4 x2
3 x2

6 x2
1 x2

5 corresponding to

the pairing [3, 1,2, 1,3,2]. In general, terms containing all of the x i ’s as powers of two will correspond to Langford pairings.

Since all the x i ’s in these terms have even degree, plugging in 1 or −1 will always yield 1 at the end. Every other term not

corresponding to a Langford pairing will have at least one term of degree 1. Iterating over every possible x1, . . . , x2n will

lead to the cancelling of all these other terms. Thus, all we are left with is the sum of 1’s, each 1 corresponding to a valid

pairing.

There are 22n possible values for the tuple (x1, . . . , x2n) where each x i takes on one of two values, leading to an overcount

by a factor of 22n. Then we also consider reversals of a Langford pairing to be the same, leading to an overcount of a factor

of 2. This explains the 22n+1 coefficient on Ln.

For those interested, part (b) of the question utilizes the Gray Code from last week’s meeting to speed up the computation

and part (c) uses some clever math to further speed it up. Knuth has some good writing on this in his solutions in [Knu11].
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https://github.com/SIGma-UIUC/meetings/blob/main/SP23/3-langford/langford_pairing.py
https://www.cstheory.org/meetings/sp23/binary/slides.pdf


Exercise 15 of [Knu22, Chapter 7.2.2.1]
There are two ways we can modify our formulation of Langford pairing as an exact cover problem to exclude finding

both a pairing and it’s reverse, leading to a significant speedup. Recall that each option takes the form i :
�

l j , lk

�

, k = j+ i+1,

meaning i appears in slot j and k in the list. Our two options study where the smallest or one of the largest elements must

appear in the resulting pairing.

Option 1: Let [n even] be a quantity equal to 1 if n is even and 0 otherwise. We can exclude an option i :
�

l j , lk

�

if both

i = n− [n even] and j > n
2 . This corresponds to pairings where the first time i appears is after the first quarter of the list

and where the second time i appears in in the last quarter of the list. In the reversal of these pairings, i would appear in the

first quarter, and thus this excludes reversals.

This excludes
�

n
2

�

options.

Option 2: We could more simply omit pairings where i = 1 and j ≥ n. Thus, the second 1 must appear strictly in the

second half. Thus in the reversal, the first i must appear at a slot j < n. This also omits the reversals.

This excludes n− 1 options.

Program for Generating all Langford Pairings
See the function find_pairings on GitHub
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