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Langford Pairings



Langford Pairings

Consider the following list, called a “Langford pairing”

[2, 3, 1, 2, 1, 3] (1)

It has a very peculiar property. Each pair of the same digits k has
exactly k numbers between them
• There is exactly 1 number between both 1’s
• There is exactly 2 numbers between both 2’s
• There is exactly 3 numbers between both 3’s

Exercise: Consider the list of digits [1, 1, . . . , n, n]. Creating such a
number as in Equation 1 is impossible for n = 1 or 2. We just saw it’s
possible for n = 3. Come up with a pairing for n = 4.
Answer: [4, 1, 3, 1, 2, 4, 3, 2] or [2, 3, 4, 2, 1, 3, 1, 4].



Existence of Langford Pairs

• So these Langford pairs for [1, 1, . . . , n, n] exist sometimes
▶ Trivially1, it exists for n = 0
▶ No such pairing exists for n = 1 or n = 2 (try it yourself)
▶ We just saw pairings exist for n = 3 and n = 4
▶ Can we characterize for exactly which n we can find pairings?

1or perhaps stupidly, depending on your perspective
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A characterization of n

We are going to characterize the set of n that have at least one Langford
pairing. In doing so, we will find a formula to construct these pairings.

Theorem [Dav59]: The numbers [1, 1, . . . , n, n] can be arranged in a
Langford pairing if and only if n is a multiple of 4 or one less than a
multiple of 4



Proof of the Theorem

• Suppose [1, 1, . . . , n, n] can be arranged into some sort of Langford
pairing.

• Consider the numbers in such a pairing. Let ar be equal to the
index of the first time r appears in the sequence
▶ Then note that ar + r + 1 is the index of the second time r appears

• These ar and ar + r + 1 are just some arrangement of the indices 1
through 2n



Proof of the Theorem

Since the ar and ar + r + 1 are just some arrangement of the indices 1
through 2n
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Proof of the Theorem
But the indices in total must sum to

2n∑
i=1

i =
2n(2n+ 1)

2
= 2n2 + n

This implies that

2
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which in turn implies that
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4



Proof of the Theorem

All the ar are integers which means that
∑n

r=1 ar is an integer. Thus
3n2−n

4 must be an integer

If n is an integer, than n is either 4m, 4m+ 1, 4m+ 2, or 4m+ 3

Plugging in all possible options into 3n2−n
4 yields that n = 4m or

4m+ 3 = 4(m+ 1)− 1. Thus n is a multiple of 4 or one less than a
multiple of 4



Formula for general n

These formulas are from [Dav59]. The terms hidden by . . .’s are
consecutive even / odd terms. Ex: (2, 4, 8, . . .), (1, 3, 5, . . .)

The case n = 4m : 4m− 4, . . . , 2m, 4m− 2, 2m− 3, . . . , 1, 4m− 1,

1, . . . , 2m− 3, 2m, . . . , 4m− 4, 4m, 4m− 3, . . . , 2m+ 1, 4m− 2,

2m− 2, . . . , 2, 2m− 1, 4m− 1, 2, . . . , 2m− 2, 2m+ 1, . . . , 4m− 3, 2m− 1, 4m

The case n = 4m− 1: 4m− 4, . . . , 2m, 4m− 2, 2m− 3, . . . , 1, 4m− 1,

1, . . . , 2m− 3, 2m, . . . , 4m− 4, 2m− 1, 4m− 3, . . . , 2m+ 1, 4m− 2,

2m− 2, . . . , 2, 2m− 1, 4m− 1, 2, . . . , 2m− 2, 2m+ 1, . . . , 4m− 3

Exercise: Convince yourself these formulas work by writing a program
that generates Langford pairings using these formulas



Section 3

Enumeration



Enumeration

• For n = 4m or n = 4m− 1, Langford pairings exist
• For n = 0, 3, 4 the solution is unique. What about larger n?
• There are many pairings for larger n

▶ Can we enumerate them?
• Let Ln denote the number of Langford pairings. We will count a

pairing and it’s reverse as the same.
• The state of the matter is that it is quite hard to compute Ln

• John Miller has a wonderful online history on enumerating
Langford pairings for various n

http://dialectrix.com/langford.html


Some Formulas

Mike Godfrey2 in 2002 came up with the following formula. For a
derivation, see Exercise 6a of [Knu11, Chapter 7]

Let f(x1, . . . , x2n) =

n∏
k=1

xkxn+k

2n−k−1∑
j=1

xjxj+k+1


Then

∑
x1,...,x2n∈{−1,1 }

f(x1, . . . , x2n) = 22n+1 · Ln

[Pan21] conjectures some asymptotic approximations for Ln

2http://dialectrix.com/langford/godfrey/method.html

http://dialectrix.com/langford/godfrey/method.html
http://dialectrix.com/langford/godfrey/method.html
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Exact Cover Problems

• Langford Pairings are a special case of a type of problem called
Exact Cover
• In 1972, Richard Karp proved that Exact Cover, among 20 other

problems, is NP-Complete
▶ Easy to verify solutions in polynomial time
▶ Hard to solve, best known solutions run in exponential time
▶ Can simulate (or reduce) other problems in NP using Exact Cover

• The goal of Exact Cover is to “cover” a list of items using different
given subsets, and select each item exactly one time



An Example of Exact Cover



0 0 1 0 1 0 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1


We can abstract this to options containing items

1: [3, 5] 2 : [1, 4, 7] 3 : [2, 3, 6]
4 : [1, 4, 6] 5 : [2, 7] 6 : [4, 5, 7]

Answer: Select options 1, 4, and 5



Solving Exact Cover Problems
In trying to solve the previous problem, you may have naturally found a
recursive algorithm to find a solution

FindCover(Options, Cover, i):
1: if Cover is a cover:
2: terminate successfully
3: if no option in Options contains i:
4: terminate unsuccessfully
5:
6: I ← options in Options that contain i
7: Options ← Options \I
8: for each O in I:
9: j ← an item still not covered
10: FindCover(Options, Cover ∪{O }, j)



Non-recursive Algorithms

• In [Knu22, Chapter 7.2.1.1], Knuth talks about algorithms which
solve exact cover problems

• He does so using method involving doubly linked lists
▶ He colorfully calls these dancing links

• His AlgorithmX uses dancing links to solve exact cover problems



Langford Pairings as an Exact Cover

• Let’s model finding a Langford Pairing as an exact cover problem
• Suppose n = 4, then we want to place [1, 1, . . . , 4, 4] in a list of size 8
• Our items can be slots in the list: l1, l2, . . . , l8

• Our options can be modeled as such

1: [l1, l3] 1 : [l2, l4] 1 : [l3, l5] 1 : [l4, l6] 1 : [l5, l7] 1 : [l6, l8]

2 : [l1, l4] 2 : [l2, l5] 2 : [l3, l6] 2 : [l4, l7] 2 : [l5, l8]

3 : [l1, l5] 3 : [l2, l6] 3 : [l3, l7] 3 : [l4, l8]

4 : [l1, l6] 4 : [l2, l7] 4 : [l3, l8]



Langford Pairings as an Exact Cover
• We can generalize this
• For general n, what items do we have?

▶ l1, . . . , l2n
• For some 1 ≤ i ≤ n, what j, k work to form an option i : [lj , lk]? Say
j < k to avoid duplicates
▶ 1 ≤ j < k ≤ 2n
▶ k = j + i+ 1

• So all of our options take the form

i : [lj , lk], for 1 ≤ j < k ≤ 2n, k = j + i+ 1, 1 ≤ i ≤ n.

• We can use our algorithm FindCover to (perhaps slowly) find all
solutions for general n



Questions?



Combinatorics is special. Most mathematical topics which can be covered in a

lecture course build towards a single, well-defined goal, such as the Prime Number

Theorem. Even if such a clear goal doesn’t exist, there is a sharp focus (e.g. finite

groups). By contrast, combinatorics appears to be a collection of unrelated puzzles

chosen at random. Two factors contribute to this. First, combinatorics is broad

rather than deep. Second, it is about techniques rather than results.

— PETER J. CAMERON (1995)



Questions!

i : [lj , lk], for 1 ≤ j < k ≤ 2n, k = j + i+ 1, 1 ≤ i ≤ n.

• Exercise 15 of [Knu22, Chapter 7.2.2.1]: Recall our formulation of
finding Langford Pairings as an exact cover. Running FindCover
on this will produce a pairing and it’s reverse. Modify our
formulation to only produce half of the Langford Pairings for n,
where the missing half is the reversals of the solutions we find.

• Use the formulation of Langford Pairings stated before, or the one
you find in the previous exercise, to write a program that finds all
Langford Pairings for a given n. Try your algorithm out for n = 7
(there are 26, not including reversals).
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