[Knu11, Chapter 7] and [Knu22, Chapter 7.2.2.1]
Langford Pairings and Exact Covers

Anakin

Outline

Langford Pairings

Characterization and Existance

Enumeration

Exact Covers

Section 1

Langford Pairings

Langford Pairings

Consider the following list, called a "Langford pairing"

$$
\begin{equation*}
[2,3,1,2,1,3] \tag{1}
\end{equation*}
$$

It has a very peculiar property. Each pair of the same digits k has exactly k numbers between them

- There is exactly $\mathbf{1}$ number between both $\mathbf{1}$'s
- There is exactly 2 numbers between both 2 's
- There is exactly $\mathbf{3}$ numbers between both $\mathbf{3}$'s

Exercise: Consider the list of digits $[1,1, \ldots, n, n]$. Creating such a number as in Equation 1 is impossible for $n=1$ or 2 . We just saw it's possible for $n=3$. Come up with a pairing for $n=4$.
Answer: $[4,1,3,1,2,4,3,2]$ or $[2,3,4,2,1,3,1,4]$.

Existence of Langford Pairs

- So these Langford pairs for $[1,1, \ldots, n, n]$ exist sometimes
- Trivially ${ }^{1}$, it exists for $n=0$
- No such pairing exists for $n=1$ or $n=2$ (try it yourself)
- We just saw pairings exist for $n=3$ and $n=4$
- Can we characterize for exactly which n we can find pairings?

[^0]
Section 2

Characterization and Existance

A characterization of n

We are going to characterize the set of n that have at least one Langford pairing. In doing so, we will find a formula to construct these pairings.

Theorem [Dav59]: The numbers $[1,1, \ldots, n, n]$ can be arranged in a Langford pairing if and only if n is a multiple of 4 or one less than a multiple of 4

Proof of the Theorem

- Suppose $[1,1, \ldots, n, n]$ can be arranged into some sort of Langford pairing.
- Consider the numbers in such a pairing. Let a_{r} be equal to the index of the first time r appears in the sequence
- Then note that $a_{r}+r+1$ is the index of the second time r appears
- These a_{r} and $a_{r}+r+1$ are just some arrangement of the indices 1 through $2 n$

Proof of the Theorem

Since the a_{r} and $a_{r}+r+1$ are just some arrangement of the indices 1 through $2 n$

$$
\begin{aligned}
\sum_{r=1}^{n} a_{r}+\sum_{r=1}^{n}\left(a_{r}+r+1\right) & =2 \sum_{r=1}^{n} a_{r}+\sum_{r=1}^{n} r+\sum_{r=1}^{n} 1 \\
& =2 \sum_{r=1}^{n} a_{r}+\frac{n(n+1)}{2}+n
\end{aligned}
$$

Proof of the Theorem

But the indices in total must sum to

$$
\sum_{i=1}^{2 n} i=\frac{2 n(2 n+1)}{2}=2 n^{2}+n
$$

This implies that

$$
2 \sum_{r=1}^{n} a_{r}+\frac{n(n+1)}{2}+n=2 n^{2}+n
$$

which in turn implies that

$$
\sum_{r=1}^{n} a_{r}=\frac{3 n^{2}-n}{4}
$$

Proof of the Theorem

All the a_{r} are integers which means that $\sum_{r=1}^{n} a_{r}$ is an integer. Thus $\frac{3 n^{2}-n}{4}$ must be an integer

If n is an integer, than n is either $4 m, 4 m+1,4 m+2$, or $4 m+3$

Plugging in all possible options into $\frac{3 n^{2}-n}{4}$ yields that $n=4 m$ or $4 m+3=4(m+1)-1$. Thus n is a multiple of 4 or one less than a multiple of 4

Formula for general n

These formulas are from [Dav59]. The terms hidden by ...'s are consecutive even / odd terms. Ex: $(2,4,8, \ldots),(1,3,5, \ldots)$

The case $\boldsymbol{n}=\mathbf{4 m}: 4 m-4, \ldots, 2 m, 4 m-2,2 m-3, \ldots, 1,4 m-1$, $1, \ldots, 2 m-3,2 m, \ldots, 4 m-4,4 m, 4 m-3, \ldots, 2 m+1,4 m-2$, $2 m-2, \ldots, 2,2 m-1,4 m-1,2, \ldots, 2 m-2,2 m+1, \ldots, 4 m-3,2 m-1,4 m$

The case $\boldsymbol{n}=4 \boldsymbol{m}-\mathbf{1}: 4 m-4, \ldots, 2 m, 4 m-2,2 m-3, \ldots, 1,4 m-1$, $1, \ldots, 2 m-3,2 m, \ldots, 4 m-4,2 m-1,4 m-3, \ldots, 2 m+1,4 m-2$, $2 m-2, \ldots, 2,2 m-1,4 m-1,2, \ldots, 2 m-2,2 m+1, \ldots, 4 m-3$

Exercise: Convince yourself these formulas work by writing a program that generates Langford pairings using these formulas

Section 3

Enumeration

Enumeration

- For $n=4 m$ or $n=4 m-1$, Langford pairings exist
- For $n=0,3,4$ the solution is unique. What about larger n ?
- There are many pairings for larger n
- Can we enumerate them?
- Let L_{n} denote the number of Langford pairings. We will count a pairing and it's reverse as the same.
- The state of the matter is that it is quite hard to compute L_{n}
- John Miller has a wonderful online history on enumerating Langford pairings for various n

Some Formulas

Mike Godfrey ${ }^{2}$ in 2002 came up with the following formula. For a derivation, see Exercise 6a of [Knu11, Chapter 7]

$$
\begin{aligned}
& \text { Let } f\left(x_{1}, \ldots, x_{2 n}\right)=\prod_{k=1}^{n}\left(x_{k} x_{n+k} \sum_{j=1}^{2 n-k-1} x_{j} x_{j+k+1}\right) \\
& \text { Then } \sum_{x_{1}, \ldots, x_{2 n} \in\{-1,1\}} f\left(x_{1}, \ldots, x_{2 n}\right)=2^{2 n+1} \cdot L_{n}
\end{aligned}
$$

[Pan21] conjectures some asymptotic approximations for L_{n}

[^1]
Section 4

Exact Covers

Exact Cover Problems

- Langford Pairings are a special case of a type of problem called Exact Cover
- In 1972, Richard Karp proved that Exact Cover, among 20 other problems, is NP-Complete
- Easy to verify solutions in polynomial time
- Hard to solve, best known solutions run in exponential time
- Can simulate (or reduce) other problems in NP using Exact Cover
- The goal of Exact Cover is to "cover" a list of items using different given subsets, and select each item exactly one time

An Example of Exact Cover

$$
\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

We can abstract this to options containing items

$$
\begin{array}{lll}
1:[3,5] & 2:[1,4,7] & 3:[2,3,6] \\
4:[1,4,6] & 5:[2,7] & 6:[4,5,7]
\end{array}
$$

Answer: Select options 1, 4, and 5

Solving Exact Cover Problems

In trying to solve the previous problem, you may have naturally found a recursive algorithm to find a solution

```
FindCover(Options, Cover, i):
    if Cover is a cover:
        terminate successfully
    if no option in Options contains i
        terminate unsuccessfully
    I\leftarrow options in Options that contain i
    7: Options }\leftarrow\mathrm{ Options \I
    8: for each }O\mathrm{ in I:
    9: }\quadj\leftarrow\mathrm{ an item still not covered
    10: FindCover(Options, Cover }\cup{O},j
```


Non-recursive Algorithms

- In [Knu22, Chapter 7.2.1.1], Knuth talks about algorithms which solve exact cover problems
- He does so using method involving doubly linked lists
- He colorfully calls these dancing links
- His AlgorithmX uses dancing links to solve exact cover problems

Langford Pairings as an Exact Cover

- Let's model finding a Langford Pairing as an exact cover problem
- Suppose $n=4$, then we want to place $[1,1, \ldots, 4,4]$ in a list of size 8
- Our items can be slots in the list: $l_{1}, l_{2}, \ldots, l_{8}$
- Our options can be modeled as such

$$
\begin{array}{llllll}
1:\left[l_{1}, l_{3}\right] & 1:\left[l_{2}, l_{4}\right] & 1:\left[l_{3}, l_{5}\right] & 1:\left[l_{4}, l_{6}\right] & 1:\left[l_{5}, l_{7}\right] & 1:\left[l_{6}, l_{8}\right] \\
2:\left[l_{1}, l_{4}\right] & 2:\left[l_{2}, l_{5}\right] & 2:\left[l_{3}, l_{6}\right] & 2:\left[l_{4}, l_{7}\right] & 2:\left[l_{5}, l_{8}\right] & \\
3:\left[l_{1}, l_{5}\right] & 3:\left[l_{2}, l_{6}\right] & 3:\left[l_{3}, l_{7}\right] & 3:\left[l_{4}, l_{8}\right] & \\
4:\left[l_{1}, l_{6}\right] & 4:\left[l_{2}, l_{7}\right] & 4:\left[l_{3}, l_{8}\right] & &
\end{array}
$$

Langford Pairings as an Exact Cover

- We can generalize this
- For general n, what items do we have?
- $l_{1}, \ldots, l_{2 n}$
- For some $1 \leq i \leq n$, what j, k work to form an option $i:\left[l_{j}, l_{k}\right]$? Say $j<k$ to avoid duplicates
- $1 \leq j<k \leq 2 n$
- $k=j+i+1$
- So all of our options take the form

$$
i:\left[l_{j}, l_{k}\right], \quad \text { for } 1 \leq j<k \leq 2 n, \quad k=j+i+1, \quad 1 \leq i \leq n .
$$

- We can use our algorithm FindCover to (perhaps slowly) find all solutions for general n

Questions?

Combinatorics is special. Most mathematical topics which can be covered in a lecture course build towards a single, well-defined goal, such as the Prime Number Theorem. Even if such a clear goal doesn't exist, there is a sharp focus (e.g. finite groups). By contrast, combinatorics appears to be a collection of unrelated puzzles chosen at random. Two factors contribute to this. First, combinatorics is broad rather than deep. Second, it is about techniques rather than results.

- PETER J. CAMERON (1995)

Questions!

$$
i:\left[l_{j}, l_{k}\right], \quad \text { for } 1 \leq j<k \leq 2 n, \quad k=j+i+1, \quad 1 \leq i \leq n
$$

- Exercise 15 of [Knu22, Chapter 7.2.2.1]: Recall our formulation of finding Langford Pairings as an exact cover. Running FindCover on this will produce a pairing and it's reverse. Modify our formulation to only produce half of the Langford Pairings for n, where the missing half is the reversals of the solutions we find.
- Use the formulation of Langford Pairings stated before, or the one you find in the previous exercise, to write a program that finds all Langford Pairings for a given n. Try your algorithm out for $n=7$ (there are 26, not including reversals).

Bibliography

Roy O. Davies.
On langford's problem (ii).
The Mathematical Gazette, 43(346):253-255, 1959.

Donald E. Knuth.
The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1. Addison-Wesley Professional, 2011.
R Donald E. Knuth.
The Art of Computer Programming, Volume 4B: Combinatorial Algorithms, Part 2. Addison-Wesley Professional, 1st edition, 2022.Zan Pan.
Conjectures on the number of langford sequences.
preprint online at https://eprint.arxitics.com/articles/langford.pdf, March 2021.

[^0]: ${ }^{1}$ or perhaps stupidly, depending on your perspective

[^1]: ${ }^{2}$ http://dialectrix.com/langford/godfrey/method.html

