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What is a Permutation

• Given a (multi)set S a permutation is an ordered sequence of every
item in S

▶ A set is an unordered collection of distinct items
▶ A multiset allows repeated items

• For n elements there are n! possible permutations
▶ n possibilities for the first item... n− 1 for the second... so on
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Enumerating Permutations

• No surprises here, algorithms to enumerate permutations are going
to require O(n!) time

• It’s nice if algorithms output permutations in either
(a) Some sorted order (lexographic)
(b) Minimal change between permutations (Gray)

• Our algorithm will be slow in it’s entirety, but we want to minimize
"delay" between outputs.
▶ We want to achieve O(1) delay between permutations
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Lexographic Permutation

• A lexographic permutation of the multiset {1,2,2,3}:

1223 1232 1322 2123
2132 2213 2231 2312
2321 3122 3212 3221

• Let’s assume we start a sequence {a1, . . . , an} that is sorted, such
that a1 ≤ a2 ≤ · · · ≤ an

• We also insert a sentinel a0 that’s smaller than everything.
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Algorithm L

AlgorithmL(S[a0, . . . , an]):
1: j ← n− 1
2: while j > 0:
3: print(S)
4: j ← n− 1
5: while S[j] ≥ S[j + 1]:
6: decrement j
7: if j = 0:
8: continue
9: l← n
10: while S[j] ≥ S[l]
11: decrement l
12: swap(S[j], S[l])
13: reverse(S, j + 1, n)
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• If j = 0, we’ve
reached our sentinel
value, and there’s
nothing left to
permute

• Otherwise, each
iteration of this
while loop will print
out a permutation.
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• Then, we find the
smallest amount we
can increase aj by
(the search for l).
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• We’ve generated the
prefix a1, . . . , aj , but
the second half is
now an, . . . , aj+1, so
we reverse it.
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Questions!

• What is the delay between permutations?
• What is (crudely) the runtime of this algorithm?
• If elements in S are distinct, how often does the decrement j step

not run?
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Gray Permutation

• We want to generate permutations in a way so that only two
adjacent elements swap at every iteration

• This isn’t guaranteed to happen in a multiset.
▶ Consider a graph of permutations, where there are edges between

adjacent swaps
▶ We want to find a Hamiltonian path, but multisets can generate

graphs where there are none!
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Gray Paths

• No path that covers all nodes

• Luckily, permuting distinct sets is usually what happens most often
in practice
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Intuition

• Consider trying to find the permutations when n = 4: {1, 2, 3, 4}

• What if you took the permutations of n = 3, and inserted 4 into
every position?

123 132 312 321 231 213

• Inserting 4’s in a snaking pattern by column, you have your
sequence of permutations

1234 1324 3124 3214 2314 2134
1243 1342 3142 3241 2341 2143
1423 1432 3412 3421 2431 2413
4123 4132 4312 4321 4231 4213
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Algorithm P
AlgorithmP(S[a0, . . . , an]):

1: C[1..n]← 0, O[1..n]← 1
2: while True:
3: print(S)
4: j ← n, s← 0
5: A: q ← C[j] +O[j]
6: if q < 0: goto D
7: if q = j: goto B
8: swap(S, j − C[j] + s, j − q + s)
9: C[j]← q
10: continue
11: B: if j = 1:
12: break
13: s← s+ 1
14: D: O[j]← −O[j], j ← j − 1
15: goto A
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• We initialize C,
which tracks
inversions, i.e. the
distance ak is from k
in later iterations

• We initialize O
which tracks which
direction values in C
have changed (left
or right)
• Every iteration, we

print out a
permutation
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C[j] is about to
change, such that
0 ≤ C[j] < j for all j

• s tracks the number
of indices k such
that C[k] = k − 1
where k > j
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D. If q = j we need
to increase s and
switch directions, if
possible

• Otherwise, we swap
the two relative
locations within S
and print out a
permutation



AlgorithmP(S[a0, . . . , an]):
1: C[1..n]← 0, O[1..n]← 1
2: while True:
3: print(S)
4: j ← n, s← 0
5: A: q ← C[j] +O[j]
6: if q < 0: goto D
7: if q = j: goto B
8: swap(S, j − C[j] + s, j − q + s)
9: C[j]← q
10: continue
11: B: if j = 1:
12: break
13: s← s+ 1
14: D: O[j]← −O[j], j ← j − 1
15: goto A

• We determine q
from C and O. If q
is less than 0, we
switch directions at
D. If q = j we need
to increase s and
switch directions, if
possible
• Otherwise, we swap

the two relative
locations within S
and print out a
permutation



AlgorithmP(S[a0, . . . , an]):
1: C[1..n]← 0, O[1..n]← 1
2: while True:
3: print(S)
4: j ← n, s← 0
5: A: q ← C[j] +O[j]
6: if q < 0: goto D
7: if q = j: goto B
8: swap(S, j − C[j] + s, j − q + s)
9: C[j]← q
10: continue
11: B: if j = 1:
12: break
13: s← s+ 1
14: D: O[j]← −O[j], j ← j − 1
15: goto A

• If we need to
increase s, we check
if j = 1 and
terminate, then we
move to D to switch
directions

• D switches the
direction stored in O
and decrements j
and returns to A to
try again
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Other interesting algorithms from this chapter:
• Algorithm T: Extends Algorithm P to output an array of

transitions, to reuse generating permutations in constant time

• Algorithm G: A generalized approach to producing permutations
when given a group of subsets of S
• Algorithm X: An extension to Algorithm L to generate

permutations satisfying some conditions efficiently
▶ It does this by maintaining a linked list of available elements
▶ This is not Algorithm X from last week



Other interesting algorithms from this chapter:
• Algorithm T: Extends Algorithm P to output an array of

transitions, to reuse generating permutations in constant time
• Algorithm G: A generalized approach to producing permutations

when given a group of subsets of S

• Algorithm X: An extension to Algorithm L to generate
permutations satisfying some conditions efficiently
▶ It does this by maintaining a linked list of available elements
▶ This is not Algorithm X from last week



Other interesting algorithms from this chapter:
• Algorithm T: Extends Algorithm P to output an array of

transitions, to reuse generating permutations in constant time
• Algorithm G: A generalized approach to producing permutations

when given a group of subsets of S
• Algorithm X: An extension to Algorithm L to generate

permutations satisfying some conditions efficiently
▶ It does this by maintaining a linked list of available elements
▶ This is not Algorithm X from last week



A permutation on the ten decimal digits is simply a 10 digit decimal number in

which all digits are distinct. Hence all we need to do is to produce all 10 digit

numbers and select only those who digits are distinct. Isn’t it wonderful how high

speed computing saves us from the drudgery of thinking! We simply program

k + 1→ k and examine the digits of k for undesirable equalities. This gives us the

permutations in dictionary order too!

On second sober thought ... we do need to think of something else.

— D. H. LEHMER (1957)
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