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Section 1

Friends and strangers



Six people walk into a party...

• We can prove that there’s a group of three people who all know
each other or all don’t know each other.

• How do we represent this?
• Coloring the edges of graphs!
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• We can prove that there’s a group of three people who all know
each other or all don’t know each other.

• How do we represent this?
• Coloring the edges of graphs!



Into graph land
We represent each person as a vertex, and connect two people with a red
edge if they know each other, and a blue edge if they don’t.

Figure: Our party - poor Frank doesn’t know anyone :(



Friends and strangers

Theorem
In a group of six people, there are either three people who all know each
other or three people who all don’t know each other.

Formally:

Theorem
If we color the edges of a complete graph K6 with two colors, there will
be at least one monochromatic triangle as a subgraph.
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Proof of the theorem of friends and strangers

We will prove by contradiction. Our goal is to color a K6 so it has no
monochromatic triangle. Let’s focus on one vertex, highlighted in green:



Proof of the theorem of friends and strangers
By the pigeonhole principle, at least 3 of this vertex’s edges must be red:

If no such vertex exists, then every vertex has at least 3 blue edges;
swap blue and red.



Proof of the theorem of friends and strangers

Now we need to connect those three neighbors. We can’t connect them
with a red edge, because that’d make a red triangle!



Proof of the theorem of friends and strangers

So we have to connect them in blue, making a blue triangle. Thus we
can’t avoid making a monochromatic triangle, proving the theorem.



Different numbers of people
• What if we have more than six people?

• If we have six or more people, this property holds because there’s a
copy of K6 inside our representative graph Kn, n >= 6.

Figure: The subgraph marked by the blue edges is a copy of K6.
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Different numbers of people

• What if we have five people?

• Looking at K5, this property no longer holds:

Figure: Each set of colored edges is a cycle of 5 elements, so no triangles!
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• What if we have five people?
• Looking at K5, this property no longer holds:
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Different numbers of people

Thus, the statement should really be “six or more people.” So this
theorem really gives us a threshold of some sort. What is this threshold?



Section 2

Ramsey’s Theorem



The full theorem

Theorem
Let integers k, l > 2. Then there exists a minimum positive integer
R(k, l) so that if we color the edges of a complete graph with R(k, l)
vertices red or blue, there is either a monochromatic red clique of k
vertices or blue clique of l vertices. [Bón06]

• A “clique” is a complete subgraph.
• Our theorem of friends and strangers is really proving R(3, 3) = 6.



Proof sketch

• The proof of Ramsey’s theorem uses induction.
• Note that R(k, l) = R(l, k). We also have R(k, 2) = k for the base

cases.
• The inductive step is:

R(k, l) ≤ R(k, l − 1) +R(k − 1, l)



Section 3

Calculating the Ramsey numbers



Just use a computer, right?

• Unfortunately, the time complexity grows far too fast.
• Suppose we want to check if R(5, 5) = N.

• A naive program would look like:

Ramsey(5, 5, N):
for every coloring C of KN :

if C does not contain a monochromatic 5-clique:
output NO and the coloring C

output YES

There might be better algorithms [Var], but there’s not a lot of work on
them; nothing seems to be fixing the time complexity just yet.



Time complexity
• The graph KN has

(
N
2

)
edges. Coloring each edge involves a choice

of one of two colors, so the total number of colorings is 2(
N
2 ).

• Naive O
(
2(

N
2 )
)

time complexity! For comparison, here’s it against

O(N !) and O
(
2N

)
:

Figure: 43 ≤ R(5, 5) ≤ 48
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Bounds

• We can at least set bounds on Ramsey numbers.

• Upper bound: [Bón06, 13.6, 13.7]

R(k, l) ≤
(
k + l − 2

k − 1

)
R(k, k) ≤

(
2k − 2

k − 1

)
≤ 4k−1

• Lower bound: [Bón06, 15.5]

(
√
2)k ≤ R(k, k) ≤ 4k−1

• The proof for the lower bound uses the probabilistic method.
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The wide world of Ramsey theory



Ramsey-type theorems

Ramsey Theory [ea90, 1.3] lays out the “Super Six:”
• Ramsey’s theorem

• Van der Waerden’s theorem: if you color the positive integers, there
is a monochromatic arithmetic progression

• Schur’s theorem: if you color the positive integers, there are three
integers x, y, z of the same color such that x+ y = z

• Rado’s theorem: There exist monochromatic solutions to integer
linear equations

• Hales-Jewett theorem: Color an n-dimensional cube, there always
exists a monochromatic line of points

• Graham-Leeb-Rothschild theorem: Hales-Jewett theorem for
subcubes instead of lines
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General vibes

• Finding ordered substructures inside partitions of sets

• Finding bounds for when those substructures pop up
▶ Van der Waerden and Schur are concerned with coloring the first N

integers
• Those bounds tend to blow up really quickly and are even harder to

compute
▶ The proof that S(5) = 161 took 2 petabytes of space!
▶ https://www.cs.utexas.edu/~marijn/Schur/

https://www.cs.utexas.edu/~marijn/Schur/
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Questions?



Aliens invade the earth and threaten to obliterate it in a year’s time unless human

beings can find the Ramsey number for red five and blue five. We could marshal the

world’s best minds and fastest computers, and within a year we could probably

calculate the value. If the aliens demanded the Ramsey number for red six and blue

six, however, we would have no choice but to launch a preemptive attack.

— PAUL ERDOS ( [ea90])
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