Ramsey's Theorem

Parth Deshmukh

Outline

Friends and strangers
Setup
Theorem and proof
\section*{Ramsey's Theorem}
Calculating the Ramsey numbers
Complexity
Bounds

The wide world of Ramsey theory

Section 1

Friends and strangers

Six people walk into a party...

- We can prove that there's a group of three people who all know each other or all don't know each other.

Six people walk into a party...

- We can prove that there's a group of three people who all know each other or all don't know each other.
- How do we represent this?

Six people walk into a party...

- We can prove that there's a group of three people who all know each other or all don't know each other.
- How do we represent this?
- Coloring the edges of graphs!

Into graph land

We represent each person as a vertex, and connect two people with a red edge if they know each other, and a blue edge if they don't.

Figure: Our party - poor Frank doesn't know anyone :(

Friends and strangers

Theorem

In a group of six people, there are either three people who all know each other or three people who all don't know each other.

Friends and strangers

Theorem

In a group of six people, there are either three people who all know each other or three people who all don't know each other.

Formally:

Theorem

If we color the edges of a complete graph K_{6} with two colors, there will be at least one monochromatic triangle as a subgraph.

Proof of the theorem of friends and strangers

We will prove by contradiction. Our goal is to color a K_{6} so it has no monochromatic triangle. Let's focus on one vertex, highlighted in green:
\bigcirc
\square

0
0

Proof of the theorem of friends and strangers

By the pigeonhole principle, at least 3 of this vertex's edges must be red:

If no such vertex exists, then every vertex has at least 3 blue edges; swap blue and red.

Proof of the theorem of friends and strangers

Now we need to connect those three neighbors. We can't connect them with a red edge, because that'd make a red triangle!

Proof of the theorem of friends and strangers

So we have to connect them in blue, making a blue triangle. Thus we can't avoid making a monochromatic triangle, proving the theorem.

Different numbers of people

- What if we have more than six people?

Different numbers of people

- What if we have more than six people?
- If we have six or more people, this property holds because there's a copy of K_{6} inside our representative graph $K_{n}, n>=6$.

Figure: The subgraph marked by the blue edges is a copy of K_{6}.

Different numbers of people

- What if we have five people?

Different numbers of people

- What if we have five people?
- Looking at K_{5}, this property no longer holds:

Figure: Each set of colored edges is a cycle of 5 elements, so no triangles!

Different numbers of people

Thus, the statement should really be "six or more people." So this theorem really gives us a threshold of some sort. What is this threshold?

Section 2

Ramsey's Theorem

The full theorem

Theorem

Let integers $k, l>2$. Then there exists a minimum positive integer $R(k, l)$ so that if we color the edges of a complete graph with $R(k, l)$ vertices red or blue, there is either a monochromatic red clique of k vertices or blue clique of l vertices. [Bón06]

- A "clique" is a complete subgraph.
- Our theorem of friends and strangers is really proving $R(3,3)=6$.

Proof sketch

- The proof of Ramsey's theorem uses induction.
- Note that $R(k, l)=R(l, k)$. We also have $R(k, 2)=k$ for the base cases.
- The inductive step is:

$$
R(k, l) \leq R(k, l-1)+R(k-1, l)
$$

Section 3

Calculating the Ramsey numbers

Just use a computer, right?

- Unfortunately, the time complexity grows far too fast.
- Suppose we want to check if $R(5,5)=N$.
- A naive program would look like:

```
Ramsey(5, 5, N):
    for every coloring C of }\mp@subsup{K}{N}{}\mathrm{ :
            if C does not contain a monochromatic 5-clique:
                output NO and the coloring C
    output YES
```

There might be better algorithms [Var], but there's not a lot of work on them; nothing seems to be fixing the time complexity just yet.

Time complexity

- The graph K_{N} has $\binom{N}{2}$ edges. Coloring each edge involves a choice of one of two colors, so the total number of colorings is $2\binom{N}{2}$.

Time complexity

- The graph K_{N} has $\binom{N}{2}$ edges. Coloring each edge involves a choice of one of two colors, so the total number of colorings is $2\binom{N}{2}$.
- Naive $O\left(2^{\binom{N}{2}}\right)$ time complexity! For comparison, here's it against $O(N!)$ and $O\left(2^{N}\right)$:

Time complexity

- The graph K_{N} has $\binom{N}{2}$ edges. Coloring each edge involves a choice of one of two colors, so the total number of colorings is $2\binom{N}{2}$.
- Naive $O\left(2^{\binom{N}{2}}\right)$ time complexity! For comparison, here's it against $O(N!)$ and $O\left(2^{N}\right)$:

Figure: $43 \leq R(5,5) \leq 48$

Bounds

- We can at least set bounds on Ramsey numbers.

Bounds

- We can at least set bounds on Ramsey numbers.
- Upper bound: [Bón06, 13.6, 13.7]

$$
\begin{gathered}
R(k, l) \leq\binom{ k+l-2}{k-1} \\
R(k, k) \leq\binom{ 2 k-2}{k-1} \leq 4^{k-1}
\end{gathered}
$$

Bounds

- We can at least set bounds on Ramsey numbers.
- Upper bound: [Bón06, 13.6, 13.7]

$$
\begin{gathered}
R(k, l) \leq\binom{ k+l-2}{k-1} \\
R(k, k) \leq\binom{ 2 k-2}{k-1} \leq 4^{k-1}
\end{gathered}
$$

- Lower bound: [Bón06, 15.5]

$$
(\sqrt{2})^{k} \leq R(k, k) \leq 4^{k-1}
$$

- The proof for the lower bound uses the probabilistic method.

Section 4

The wide world of Ramsey theory

Ramsey-type theorems

Ramsey Theory [ea90, 1.3] lays out the "Super Six:"

- Ramsey's theorem

Ramsey-type theorems

Ramsey Theory [ea90, 1.3] lays out the "Super Six:"

- Ramsey's theorem
- Van der Waerden's theorem: if you color the positive integers, there is a monochromatic arithmetic progression

Ramsey-type theorems

Ramsey Theory [ea90, 1.3] lays out the "Super Six:"

- Ramsey's theorem
- Van der Waerden's theorem: if you color the positive integers, there is a monochromatic arithmetic progression
- Schur's theorem: if you color the positive integers, there are three integers x, y, z of the same color such that $x+y=z$

Ramsey-type theorems

Ramsey Theory [ea90, 1.3] lays out the "Super Six:"

- Ramsey's theorem
- Van der Waerden's theorem: if you color the positive integers, there is a monochromatic arithmetic progression
- Schur's theorem: if you color the positive integers, there are three integers x, y, z of the same color such that $x+y=z$
- Rado's theorem: There exist monochromatic solutions to integer linear equations

Ramsey-type theorems

Ramsey Theory [ea90, 1.3] lays out the "Super Six:"

- Ramsey's theorem
- Van der Waerden's theorem: if you color the positive integers, there is a monochromatic arithmetic progression
- Schur's theorem: if you color the positive integers, there are three integers x, y, z of the same color such that $x+y=z$
- Rado's theorem: There exist monochromatic solutions to integer linear equations
- Hales-Jewett theorem: Color an n-dimensional cube, there always exists a monochromatic line of points

Ramsey-type theorems

Ramsey Theory [ea90, 1.3] lays out the "Super Six:"

- Ramsey's theorem
- Van der Waerden's theorem: if you color the positive integers, there is a monochromatic arithmetic progression
- Schur's theorem: if you color the positive integers, there are three integers x, y, z of the same color such that $x+y=z$
- Rado's theorem: There exist monochromatic solutions to integer linear equations
- Hales-Jewett theorem: Color an n-dimensional cube, there always exists a monochromatic line of points
- Graham-Leeb-Rothschild theorem: Hales-Jewett theorem for subcubes instead of lines

General vibes

- Finding ordered substructures inside partitions of sets

General vibes

- Finding ordered substructures inside partitions of sets
- Finding bounds for when those substructures pop up
- Van der Waerden and Schur are concerned with coloring the first N integers

General vibes

- Finding ordered substructures inside partitions of sets
- Finding bounds for when those substructures pop up
- Van der Waerden and Schur are concerned with coloring the first N integers
- Those bounds tend to blow up really quickly and are even harder to compute

General vibes

- Finding ordered substructures inside partitions of sets
- Finding bounds for when those substructures pop up
- Van der Waerden and Schur are concerned with coloring the first N integers
- Those bounds tend to blow up really quickly and are even harder to compute
- The proof that $\mathrm{S}(5)=161$ took 2 petabytes of space!
- https://www.cs.utexas.edu/~marijn/Schur/

Questions?

Aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack.

- PAUL ERDOS ([ea90])

Bibliography

睩 Miklós. Bóna.
A walk through combinatorics : an introduction to enumeration and graph theory.
World Scientific Pub., Hackensack, NJ, 2nd ed. edition, 2006.
R Ronald L. Graham et al.
Ramsey Theory (2nd Ed.).
Wiley-Interscience, USA, 1990.
國 Various.
Algorithms for calculating $r(5,5)$ and $r(6,6)$.
https://mathoverflow.net/questions/210653/
algorithms-for-calculating-r5-5-and-r6-6.
Accessed: 04-10-2023.

