Week 11
Streaming Algorithms and the JL Lemma

Ryan Ziegler

Outline

Background
 Probability
 Streaming and Sketching Algorithms

Streaming ℓ_{2} Estimation

From Stream to Matrix

Conclusion

Section 1

Background

Subsection 1

Probability

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$

$$
\begin{aligned}
& S=\{R, G, B\} \\
& \mathbb{P}(R)=, 5 \\
& \mathbb{P}(G)=-25 \\
& \mathbb{P}(B)=\frac{.25}{1}
\end{aligned}
$$

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.

$$
\begin{aligned}
& \mathbb{E}[X]=\Sigma_{i} p_{i} S_{i} \\
& \mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] \\
& \operatorname{Var}(X)=\mathbb{E}\left((X-\mathbb{E} X)^{2}\right)=\mathbb{E}\left[X^{\partial}\right]-\mathbb{E}[X]^{2}
\end{aligned}
$$

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X]=\sum p_{i} S_{i}$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X]=\sum p_{i} S_{i}$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.
- Expectation is a linear operator: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X]=\sum p_{i} S_{i}$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.
- Expectation is a linear operator: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- Variance: $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$, a low variance indicates that most of the time, when we pick X it will be close to $\mathbb{E}[X]$

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X]=\sum p_{i} S_{i}$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.
- Expectation is a linear operator: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- Variance: $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$, a low variance indicates that most of the time, when we pick X it will be close to $\mathbb{E}[X]$
- Note that for $c \in \mathbb{R}, \operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$

Even More Probability

$$
\mathcal{N}(0,1) \quad \mathbb{E}=0 \quad \operatorname{Var}=1
$$

- Normal distribution: $\mathcal{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$

$X, Y \sim N(\mu, \sigma) X+Y^{\prime}$ is also Normal

Even More Probability

- Normal distribution: $\mathcal{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$
- Normal distribution is 2 -stable: for $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right), X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$

Even More Probability

- Normal distribution: $\mathcal{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$
- Normal distribution is 2-stable: for $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right), X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$
- $\chi^{2}(k)$ distribution: Sum of $k \mathcal{N}(0,1)$ random variables, has expected value k

Even More Probability

- Normal distribution: $\mathcal{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$
- Normal distribution is 2-stable: for $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right), X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$
- $\chi^{2}(k)$ distribution: Sum of $k \mathcal{N}(0,1)$ random variables, has expected value k
- Bernoulli distribution: If $X \sim \operatorname{Bernoulli}(p), X$ is 1 with probability p and 0 with probability $(1-p)$

Independence and Inequalities

$$
X_{1}, \ldots, X_{n}
$$

- A set of random variables is k-wise independent iff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$

Independence and Inequalities

- A set of random variables is k-wise independent iff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \mathbb{E}\left[x_{i}\right]$

Independence and Inequalities

- A set of random variables is k-wise independent iff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \mathbb{E}\left[x_{i}\right]$
- Important: k-wise independence implies $(k-1)$-wise independence

Independence and Inequalities

- A set of random variables is k-wise independent iff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \mathbb{E}\left[x_{i}\right]$
- Important: k-wise independence implies $(k-1)$-wise independence
- Chebyshev's inequality: $\left.\mathrm{P}(|X-\mathbb{E}[X]| \geq k \sigma) \leq \frac{1}{k^{2}}\right)$

Independence and Inequalities

- A set of random variables is k-wise independent ff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \mathbb{E}\left[x_{i}\right]$
- Important: k-wise independence implies $(k-1)$-wise independence
- Chebyshev's inequality: $\mathrm{P}(|X-\mathbb{E}[X]| \geq k \sigma) \leq \frac{1}{k^{2}}$
- Chernoff bound: Let X be sum of h fully independent Bernoulli RVs, and $\delta \geq 1$. $\mathrm{P}(X>(1+\delta) \mathbb{E}[X]) \leq e^{-\delta^{2} \mu / 3}$

$$
\begin{aligned}
Y_{1}, \ldots, Y_{n} \sim \operatorname{Bervolli}(p) \quad & X=\sum Y_{i} \\
& \mathbb{E}[X]=n p
\end{aligned}
$$

Subsection 2

Streaming and Sketching Algorithms

Intro to Streaming Algorithms

- Streaming model: your algorithm receives inputs one-by-one, and you don't know how many inputs you'll receive. Too many inputs to store them all and compute later
too man elements to stere in memory!.
\Rightarrow sublinear space
ex: you receive a stream of Youtube
Video Views, want the k most watched videos today
keep a data structure with OIk) space, and update flat when sos see a woden

Intro to Streaming Algorithms

- Streaming model: your algorithm receives inputs one-by-one, and you don't know how many inputs you'll receive. Too many inputs to store them all and compute later
- (*) Example: suppose you want to calculate the k most watched YouTube videos today. It takes too much space to store all the YouTube videos and associated view counters, so you want an algorithm that does the following: upon recieving a YouTube video ID, update some data structure and continue without storing anything on disk. At the end of the day, this data structure should tell you the k most viewed videos.

Intro to Streaming Algorithms

- Streaming model: your algorithm receives inputs one-by-one, and you don't know how many inputs you'll receive. Too many inputs to store them all and compute later
- (*) Example: suppose you want to calculate the k most watched YouTube videos today. It takes too much space to store all the YouTube videos and associated view counters, so you want an algorithm that does the following: upon recieving a YouTube video ID, update some data structure and continue without storing anything on disk. At the end of the day, this data structure should tell you the k most viewed videos.
- (*) The above is possible to do exactly with only $O(k)$ space, but this is rare. Most streaming algorithms will only output approximates that are good with some probability
output a random variable Z

$$
\frac{\mathbb{E}[z]=g(\sigma)}{\operatorname{Lo}_{\sigma} \text { is our stream }}
$$

generally, $\operatorname{Var}(z) \leq g(\sigma)$
$Z^{*}=\frac{1}{\hbar} \sum Z_{l} \quad$ where Z_{i} is an II copy of alg .

$$
\operatorname{Var}\left(z^{*}\right)=\frac{1}{n} \operatorname{Var}(z)
$$

$$
\mathbb{P}\left\{\mathbb{Z}^{*}-g(\sigma) \mid \geqslant \varepsilon g(\sigma)\right\} \leqslant \frac{1}{4} \Longrightarrow \text { (hebushev }
$$

Q : how big shard h be?

$$
h=O\left(\frac{1}{\varepsilon^{2}}\right) \text { if } \varepsilon \leqslant .001, h \leqslant 1000
$$

next goal: we want to output some z^{\prime}
so that

$$
\left.\mathbb{P} \xi\left|i^{-}-g(\sigma)\right| \geqslant 2 g(\sigma)\right\} \leqslant \delta
$$

$Z_{1}^{*}, \ldots, Z_{k}^{*}$ that fail $w /$ prob. $1 / 4$
\downarrow

$$
X_{1, \ldots}, X_{k} \quad \text { Bernolli(1/4) }
$$

$x_{i}=1$ if Z_{i} is "bad", O otherwise

median is bad of $n / 2$ bad values

$$
\begin{aligned}
& N=8 x_{i} \quad \mathbb{P}\left\{\mathbb{R}^{\prime}-g(\sigma)(\geqslant \varepsilon g(\sigma)\}\right.=\mathbb{P}\left\{N \geq \frac{n}{2}\right\} \\
&\left.O\left(\frac{\ln (1 / 8)}{a^{3}}\right) \text { pardlel upies }\right) \\
&=\mathbb{P}\left\{N \geqslant(1+1) \frac{n}{4}\right\} \\
& \leqslant \exp (-k / 12) \Rightarrow(6-O(61 / 8)
\end{aligned}
$$

A Template for Sketching Algorithms

- First, output a random variable Z such that $\mathbb{E}[Z]=g(\sigma)$ where $g(\sigma)$ is the function we're estimating for the stream σ
- Usually Z will have high variance, typically $\operatorname{Var}(Z) \leq g(\sigma)$
- How to reduce variance? Run the streaming algorithm h times in parallel, and let $Z^{*}=\frac{1}{h} \sum Z_{i}$

$$
\operatorname{Var}\left(Z^{*}\right)=\frac{1}{h} \operatorname{Var}\left(Z_{1}\right) \text { and } \mathbb{E}\left[Z^{*}\right]=\mathbb{E}\left[Z_{1}\right]
$$

- (*) By Chebyshev's inequality,

$$
\mathrm{P}\left(\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)\right) \leq \frac{\epsilon^{2}}{h}
$$

- (*) So, pick $h=\frac{4}{\epsilon^{2}}$ for constant failure probability of $\frac{1}{4}$

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better
- Consider parallel copies $Z_{1}^{*}, \ldots, Z_{k}^{*}$ that each fail with probability $1 / 4$

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better
- Consider parallel copies $Z_{1}^{*}, \ldots, Z_{k}^{*}$ that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better
- Consider parallel copies $Z_{1}^{*}, \ldots, Z_{k}^{*}$ that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?
- (*) Let $X_{i}=1$ iff the i th parallel copy fails, so then $X_{i} \sim \operatorname{Bernoulli}(1 / 4)$

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better
- Consider parallel copies $Z_{1}^{*}, \ldots, Z_{k}^{*}$ that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?
- (*) Let $X_{i}=1$ iff the i th parallel copy fails, so then $X_{i} \sim \operatorname{Bernoulli}(1 / 4)$
- (*) Define $X=\sum X_{i}$, so then $\mathbb{E}[X]=\frac{k}{4}$

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better
- Consider parallel copies $Z_{1}^{*}, \ldots, Z_{k}^{*}$ that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?
- (*) Let $X_{i}=1$ iff the i th parallel copy fails, so then $X_{i} \sim \operatorname{Bernoulli}(1 / 4)$
- (*) Define $X=\sum X_{i}$, so then $\mathbb{E}[X]=\frac{k}{4}$
- (*) By Chernoff bound,

$$
\mathrm{P}\left(X \geq(1+1) \frac{k}{4}\right) \leq e^{-k / 12}
$$

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better
- Consider parallel copies $Z_{1}^{*}, \ldots, Z_{k}^{*}$ that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?
- (*) Let $X_{i}=1$ iff the i th parallel copy fails, so then $X_{i} \sim \operatorname{Bernoulli}(1 / 4)$
- (*) Define $X=\sum X_{i}$, so then $\mathbb{E}[X]=\frac{k}{4}$
- (*) By Chernoff bound,

$$
\mathrm{P}\left(X \geq(1+1) \frac{k}{4}\right) \leq e^{-k / 12}
$$

- $(*)$ So, pick $k=O(\log (1 / \delta))$. Only running $O\left(\frac{\log \left(\frac{1}{\delta}\right)}{\epsilon^{2}}\right)$

Section 2

Streaming ℓ_{2} Estimation

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_{1}, \cdots \in \mathbb{Z}$ where $1 \leq e_{i} \leq n$ for some n we know apriori

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_{1}, \cdots \in \mathbb{Z}$ where $1 \leq e_{i} \leq n$ for some n we know apriori
- Define the frequency vector to be $f(\sigma)=\left(f_{1}, \ldots, f_{n}\right)$ where f_{i} is the number of times we've seen i

$$
\begin{aligned}
& \sigma=\{1,1,5,7\} \\
& f=(2,0,0,0,1,0,1)
\end{aligned}
$$

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_{1}, \cdots \in \mathbb{Z}$ where $1 \leq e_{i} \leq n$ for some n we know apriori
- Define the frequency vector to be $f(\sigma)=\left(f_{1}, \ldots, f_{n}\right)$ where f_{i} is the number of times we've seen i
- Goal: estimate $\|f(\sigma)\|_{2}^{2}$ with only $O(\operatorname{poly} \log (n))$ space

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_{1}, \cdots \in \mathbb{Z}$ where $1 \leq e_{i} \leq n$ for some n we know apriori
- Define the frequency vector to be $f(\sigma)=\left(f_{1}, \ldots, f_{n}\right)$ where f_{i} is the number of times we've seen i
- Goal: estimate $\|f(\sigma)\|_{2}^{2}$ with only $O(\operatorname{poly} \log (n))$ space
- Recall the definition of L_{2} norm:

$$
\|f(\sigma)\|_{2}^{2}=\sum_{i=1}^{n} f_{i}^{2}
$$

AMS F2 Estimation

- Intuition: keep a single variable Z so that we can output Z^{2} as our estimate of $\|f(\sigma)\|_{2}^{2}$

$$
\mathbb{E}\left[2^{4}\right] \leqslant\|f(\sigma)\|_{\partial}^{\partial}
$$

$$
\begin{aligned}
Z= & \sum f_{i} Y_{i} \\
& \mathbb{E}[z]=\sum f_{i} \mathbb{E}\left[Y_{i}\right] \\
& \mathbb{E}\left[z^{2}\right]=\underbrace{\sum f_{i}^{2} \mathbb{E}\left[Y_{i}\right]^{2}}_{\mathbb{E}}+2 Y_{i \neq j} \mathbb{E}\left[Y_{i} Y_{j}\right] f_{i} f_{j} \\
& \mathbb{E}\left[Y_{i}^{2}\right]=\mathbb{I} \quad \mathbb{E}\left[Z^{2}\right]=\|f(\sigma)\|_{2}^{2}
\end{aligned}
$$

let Y_{i} be pa ind $Y_{i}=1$ awl prob $\cdot 5$ $Y_{i}=-1 \quad \omega 1$ prob -5

AMS F2 Estimation

- Intuition: keep a single variable Z so that we can output Z^{2} as our estimate of $\|f(\sigma)\|_{2}^{2}$
- (*) Idea: create some random variable Y_{i} for each index so that $\mathbb{E}\left[Z^{2}\right]=\|f(\sigma)\|_{2}^{2}$. In particular, $Z=\sum Y_{i} f_{i}$

$$
\mathbb{E}\left[Z^{2}\right]=\sum f_{i}^{2} Y_{i}^{2}+2 \sum_{i \neq j} f_{i} f_{j} Y_{i} Y_{j}
$$

- (*) We need Y_{i} to be pairwise independent and satisfy $\mathbb{E}\left[Y_{i} Y_{j}\right]=0$ and $\mathbb{E}\left[Y_{i}^{2}\right]=1$

AMS F2 Estimation

- Intuition: keep a single variable Z so that we can output Z^{2} as our estimate of $\|f(\sigma)\|_{2}^{2}$
- $\left.{ }^{*}\right)$ Idea: create some random variable Y_{i} for each index so that $\mathbb{E}\left[Z^{2}\right]=\|f(\sigma)\|_{2}^{2}$. In particular, $Z=\sum Y_{i} f_{i}$

$$
\mathbb{E}\left[Z^{2}\right]=\sum f_{i}^{2} Y_{i}^{2}+2 \sum_{i \neq j} f_{i} f_{j} Y_{i} Y_{j}
$$

- (*) We need Y_{i} to be pairwise independent and satisfy $\mathbb{E}\left[Y_{i} Y_{j}\right]=0$ and $\mathbb{E}\left[Y_{i}^{2}\right]=1$
- (*) Solution: $Y_{i}=1$ with probability $\frac{1}{2}$ and $Y_{i}=-1$ with probability $\frac{1}{2}$

AMS F2 Estimation Continued

- Creating $O(n)$ random variables takes up too much space!
- Solution: $O(1)$-wise independent hash family of functions $[n] \rightarrow\{-1,1\}$ can be stored in $O(\operatorname{polylog}(n))$ space

$$
z=\Sigma f_{c} h(i)
$$

when we see $e \in(n)$

$$
z^{x}=h(e)
$$

AMS F2 Estimation Continued

- Creating $O(n)$ random variables takes up too much space!
- Solution: $O(1)$-wise independent hash family of functions $[n] \rightarrow\{-1,1\}$ can be stored in $O(\operatorname{polylog}(n))$ space
- (*) Replace each Y_{i} with $h(i)$, and the analysis is the exact same

AMS F2 Estimation Continued

- Creating $O(n)$ random variables takes up too much space!
- Solution: $O(1)$-wise independent hash family of functions $[n] \rightarrow\{-1,1\}$ can be stored in $O(\operatorname{polylog}(n))$ space
- $\left.{ }^{*}\right)$ Replace each Y_{i} with $h(i)$, and the analysis is the exact same
- (*) Similar analysis shows $\mathbb{E}\left[Z^{4}\right] \leq 2\|f(\sigma)\|_{2}^{2}$, so we can apply average and median idea from before

AMS F2 Estimation Continued

- Creating $O(n)$ random variables takes up too much space!
- Solution: $O(1)$-wise independent hash family of functions $[n] \rightarrow\{-1,1\}$ can be stored in $O(\operatorname{polylog}(n))$ space
- (*) Replace each Y_{i} with $h(i)$, and the analysis is the exact same
- (*) Similar analysis shows $\mathbb{E}\left[Z^{4}\right] \leq 2\|f(\sigma)\|_{2}^{2}$, so we can apply average and median idea from before

```
def ams_f2:
    let h be a hash function from hash family H
    let z = 0
    while i is an item from stream
        z = z + h(i)
    output z
```


Extending F2 Estimation

- Note that we never used the fact that f_{i} was positive or integral
- Richer model: receive a stream of updates of the form $\left(i, \Delta_{i}\right)$ representing a change to the i th coordinate of our vector

Extending F2 Estimation

- Note that we never used the fact that f_{i} was positive or integral
- Richer model: receive a stream of updates of the form $\left(i, \Delta_{i}\right)$ representing a change to the i th coordinate of our vector

def l2_estimate:

let h be a hash function from hash family H
let $\mathrm{z}=0$
while (id) is an item from stream
$z=z+h(i) d$
output z^{2}
alg is a fond C let σ_{1} and σ_{α} be streamer

$$
C\left(\sigma_{1}+\sigma_{2}\right)=C\left(\sigma_{1}\right)+C\left(\sigma_{2}\right)
$$

$$
O\left(\frac { (n / 6) } { n ^ { 2 } } \left\{\left[\begin{array}{cccc}
\frac{n}{n_{2}^{(1)}} n_{2}(2) & \cdots & \cdots & n_{f}(n) \\
& \vdots & & \\
n_{v}(1) & \cdots & & \\
n_{6}(n)
\end{array}\right]\left[\begin{array}{l}
f
\end{array}\right]=\left[0\left(\frac{1 n^{\prime} / k_{0}}{a^{2}}\right)\right.\right.\right.
$$

Section 3
From Stream to Matrix

Linear Sketching

- What we just created is a linear sketch: call our algorithm C. We can show that $C\left(\sigma_{1}+\sigma_{2}\right)=C\left(\sigma_{1}\right)+C\left(\sigma_{2}\right)$, since each iteration we add to Z
- $\left({ }^{*}\right)$ Geometric interpretation: our algorithm is an $\frac{\log (1 / \delta) \log n}{\epsilon^{2}} \times n$ matrix M of $\{-1,1\}$ values, each row is a parallel copy of the streaming algorithm

Linear Sketching

- What we just created is a linear sketch: call our algorithm C. We can show that $C\left(\sigma_{1}+\sigma_{2}\right)=C\left(\sigma_{1}\right)+C\left(\sigma_{2}\right)$, since each iteration we add to Z
- $(*)$ Geometric interpretation: our algorithm is an $\frac{\log (1 / \delta) \log n}{\epsilon^{2}} \times n$ matrix M of $\{-1,1\}$ values, each row is a parallel copy of the streaming algorithm
- (*) Now we have $M x=y$ where y is a vector whose length is similar to that of x but is in lower dimension

Linear Sketching

- What we just created is a linear sketch: call our algorithm C. We can show that $C\left(\sigma_{1}+\sigma_{2}\right)=C\left(\sigma_{1}\right)+C\left(\sigma_{2}\right)$, since each iteration we add to Z
- $(*)$ Geometric interpretation: our algorithm is an $\frac{\log (1 / \delta) \log n}{\epsilon^{2}} \times n$ matrix M of $\{-1,1\}$ values, each row is a parallel copy of the streaming algorithm
- (*) Now we have $M x=y$ where y is a vector whose length is similar to that of x but is in lower dimension
- $\left(^{*}\right)$ Next goal: generalize this idea so that we can reduce the dimension of a set of vectors while preserving pairwise distances

Linear Sketching

- What we just created is a linear sketch: call our algorithm C. We can show that $C\left(\sigma_{1}+\sigma_{2}\right)=C\left(\sigma_{1}\right)+C\left(\sigma_{2}\right)$, since each iteration we add to Z
- $(*)$ Geometric interpretation: our algorithm is an $\frac{\log (1 / \delta) \log n}{\epsilon^{2}} \times n$ matrix M of $\{-1,1\}$ values, each row is a parallel copy of the streaming algorithm
- (*) Now we have $M x=y$ where y is a vector whose length is similar to that of x but is in lower dimension
- $\left(^{*}\right)$ Next goal: generalize this idea so that we can reduce the dimension of a set of vectors while preserving pairwise distances
- $\left(^{*}\right)$ Useful in real-world applications such as nearest neighbors, ML, etc

The JL Lemma

$$
\mathbb{E}[X]=0 \quad \mathbb{E}\left[x^{2}\right]=1
$$

- Let M be an $k \times n$ matrix where each entry is chosen independently from $\mathcal{N}(0,1)$
- Claim: for $k=\Omega\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, we have that with probability $1-\delta$, $\left\|\frac{1}{\sqrt{k}} M x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ for fixed $x \in \mathbb{R}^{n}$
Let S be a set of n vectors,
If $\delta=1 / n$ el $J L$ matrix will preserve pairwise distances

The JL Lemma

- Let M be an $k \times n$ matrix where each entry is chosen independently from $\mathcal{N}(0,1)$
- Claim: for $k=\Omega\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, we have that with probability $1-\delta$, $\left\|\frac{1}{\sqrt{k}} M x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ for fixed $x \in \mathbb{R}^{n}$
- Immediate corollary: Let S be a set of k vectors in \mathbb{R}^{n}, we can preserve pairwise distances with high probability by picking $k=\Omega\left(\frac{\log n}{\epsilon^{2}}\right)$

The JL Lemma

- Let M be an $k \times n$ matrix where each entry is chosen independently from $\mathcal{N}(0,1)$
- Claim: for $k=\Omega\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, we have that with probability $1-\delta$, $\left\|\frac{1}{\sqrt{k}} M x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ for fixed $x \in \mathbb{R}^{n}$
- Immediate corollary: Let S be a set of k vectors in \mathbb{R}^{n}, we can preserve pairwise distances with high probability by picking $k=\Omega\left(\frac{\log n}{\epsilon^{2}}\right)$

JL Lemma: Idea of Proof

- Fix some vector x (wlog, let $\|x\|=1$) and use 2-stability of Normal distribution

JL Lemma: Idea of Proof

- Fix some vector x (wlog, let $\|x\|=1$) and use 2-stability of Normal distribution
- $\left({ }^{*}\right)$ Let $y=M x$, so then $y_{i}=\sum_{j=1}^{k} M_{i j} x_{i}$

JL Lemma: Idea of Proof

- Fix some vector x (wlog, let $\|x\|=1$) and use 2-stability of Normal distribution
- (*) Let $y=M x$, so then $y_{i}=\sum_{j=1}^{k} M_{i j} x_{i}$
- (*) y is a Normal vector in \mathbb{R}^{k}, and each y_{i} is $\mathcal{N}(0,1)$ (variance because $\sum x_{i}^{2}=1$)

JL Lemma: Idea of Proof

- Fix some vector x (wlog, let $\|x\|=1$) and use 2-stability of Normal distribution
- (*) Let $y=M x$, so then $y_{i}=\sum_{j=1}^{k} M_{i j} x_{i}$
- (*) y is a Normal vector in \mathbb{R}^{k}, and each y_{i} is $\mathcal{N}(0,1)$ (variance because $\sum x_{i}^{2}=1$)
- (*) Let $\alpha=\sum y_{i}^{2}$, so then $\alpha \sim \chi^{2}(k)$

JL Lemma: Idea of Proof

- Fix some vector x (wlog, let $\|x\|=1$) and use 2-stability of Normal distribution
- (*) Let $y=M x$, so then $y_{i}=\sum_{j=1}^{k} M_{i j} x_{i}$
- (*) y is a Normal vector in \mathbb{R}^{k}, and each y_{i} is $\mathcal{N}(0,1)$ (variance because $\sum x_{i}^{2}=1$)
- (*) Let $\alpha=\sum y_{i}^{2}$, so then $\alpha \sim \chi^{2}(k)$
- (*) Thus $\mathrm{P}\left((1-\epsilon)^{2} k \leq \alpha \leq(1+\epsilon)^{2} k\right) \geq 1-2 e^{O(1) \epsilon^{2} k}$

JL Lemma: Idea of Proof

- Fix some vector x (wlog, let $\|x\|=1$) and use 2-stability of Normal distribution
- (*) Let $y=M x$, so then $y_{i}=\sum_{j=1}^{k} M_{i j} x_{i}$
- (*) y is a Normal vector in \mathbb{R}^{k}, and each y_{i} is $\mathcal{N}(0,1)$ (variance because $\sum x_{i}^{2}=1$)
- (*) Let $\alpha=\sum y_{i}^{2}$, so then $\alpha \sim \chi^{2}(k)$
- $\left.{ }^{*}\right)$ Thus $\mathrm{P}\left((1-\epsilon)^{2} k \leq \alpha \leq(1+\epsilon)^{2} k\right) \geq 1-2 e^{O(1) \epsilon^{2} k}$
- (*) Picking $k=\Omega\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$ gets us the probability we want

Section 4
Conclusion

JL Lemma: Intuition and Application

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring

JL Lemma: Intuition and Application

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring
- Useful for tasks such as clustering/ML: things closer together/more similar in low dimension will be close in high dimension, so can reduce dimension and speed up clustering

JL Lemma: Intuition and Application

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring
- Useful for tasks such as clustering/ML: things closer together/more similar in low dimension will be close in high dimension, so can reduce dimension and speed up clustering
- Coreset generation: Many hard geometric problems have fast approximate solutions via coreset technique, which generates a set S^{\prime} from input S so that running an exact algorithm on S^{\prime} generates a high accuracy approximation for that algorithm on S. JL technique can be used in generating coresets

JL Lemma: Intuition and Application

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring
- Useful for tasks such as clustering/ML: things closer together/more similar in low dimension will be close in high dimension, so can reduce dimension and speed up clustering
- Coreset generation: Many hard geometric problems have fast approximate solutions via coreset technique, which generates a set S^{\prime} from input S so that running an exact algorithm on S^{\prime} generates a high accuracy approximation for that algorithm on S. JL technique can be used in generating coresets
- Key advantage of JL is that it is oblivious to data

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !
- Let E be a linear subspace of dimension d

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !
- Let E be a linear subspace of dimension d
- Can preserve distances between vectors in E with $k=\Omega\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !
- Let E be a linear subspace of dimension d
- Can preserve distances between vectors in E with $k=\Omega\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$
- Works for all vectors in E, even though there are infinitely many!

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !
- Let E be a linear subspace of dimension d
- Can preserve distances between vectors in E with $k=\Omega\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$
- Works for all vectors in E, even though there are infinitely many!
- Poof: consider partitioning the d dimensional unit ball into small hypercubes with small side length. Show that preserving lengths of vectors to these hypercubes is sufficient to preserve lengths of all vectors.

$$
\hat{\xi} g_{i}\left(f_{i}\right)
$$

$$
0<k \leqslant 2
$$

