Week 11 Streaming Algorithms and the JL Lemma

Ryan Ziegler

Outline

Background Probability Streaming and Sketching Algorithms

Streaming ℓ_2 Estimation

From Stream to Matrix

Conclusion

Section 1

Background

Subsection 1

Probability

• (Discrete) probability distribution: given a set S assign some probability p_i to each element, so that $\sum p_i = 1$

5= & R, 6, B} 1P(R)=.5 1P(6)=.25 1P(B)=.25

- (Discrete) probability distribution: given a set S assign some probability p_i to each element, so that $\sum p_i = 1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted X ~ D.

$$E[X] = 2p; \leq;$$

$$E[X+Y] = E[X] + E[Y]$$

$$Var(X) = E[(X-EX)^2) = E[X^2] + E[X]^2$$

- (Discrete) probability distribution: given a set S assign some probability p_i to each element, so that $\sum p_i = 1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted X ~ D.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X] = \sum p_i S_i$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.

- (Discrete) probability distribution: given a set S assign some probability p_i to each element, so that $\sum p_i = 1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted X ~ D.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X] = \sum p_i S_i$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.
- Expectation is a linear operator: $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

- (Discrete) probability distribution: given a set S assign some probability p_i to each element, so that $\sum p_i = 1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted X ~ D.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X] = \sum p_i S_i$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.
- Expectation is a linear operator: $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Variance: $\operatorname{Var}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$, a low variance indicates that most of the time, when we pick X it will be close to $\mathbb{E}[X]$

- (Discrete) probability distribution: given a set S assign some probability p_i to each element, so that $\sum p_i = 1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted X ~ D.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X] = \sum p_i S_i$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.
- Expectation is a linear operator: $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Variance: $\operatorname{Var}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$, a low variance indicates that most of the time, when we pick X it will be close to $\mathbb{E}[X]$

▶ Note that for $c \in \mathbb{R}$, $\operatorname{Var}(cX) = c^2 \operatorname{Var}(X)$

- Normal distribution: $\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$
- Normal distribution is 2-stable: for $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2), X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

- Normal distribution: $\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$
- Normal distribution is 2-stable: for $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2), X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
- $\chi^2(k)$ distribution: Sum of $k \mathcal{N}(0,1)$ random variables, has expected value k

- Normal distribution: $\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$
- Normal distribution is 2-stable: for $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2), X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
- $\chi^2(k)$ distribution: Sum of $k \mathcal{N}(0,1)$ random variables, has expected value k
- Bernoulli distribution: If $X \sim \text{Bernoulli}(p)$, X is 1 with probability p and 0 with probability (1-p)

• A set of random variables is k-wise independent iff for any k variables in the set, $f(x_1, \ldots, x_k) = f(x_1) \cdots f(x_k)$

- A set of random variables is k-wise independent iff for any k variables in the set, $f(x_1, \ldots, x_k) = f(x_1) \cdots f(x_k)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_i\right] = \prod_{i=1}^{k} \mathbb{E}[x_i]$

- A set of random variables is k-wise independent iff for any k variables in the set, $f(x_1, \ldots, x_k) = f(x_1) \cdots f(x_k)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_i\right] = \prod_{i=1}^{k} \mathbb{E}[x_i]$
 - ▶ Important: k-wise independence implies (k-1)-wise independence

- A set of random variables is k-wise independent iff for any k variables in the set, $f(x_1, \ldots, x_k) = f(x_1) \cdots f(x_k)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_i\right] = \prod_{i=1}^{k} \mathbb{E}[x_i]$

- A set of random variables is k-wise independent iff for any k variables in the set, $f(x_1, \ldots, x_k) = f(x_1) \cdots f(x_k)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_i\right] = \prod_{i=1}^{k} \mathbb{E}[x_i]$
 - ▶ Important: k-wise independence implies (k-1)-wise independence
- Chebyshev's inequality: $P(|X \mathbb{E}[X]| \ge k\sigma) \le \frac{1}{k^2}$
- Chernoff bound: Let X be sum of h fully independent Bernoulli RVs, and $\delta \geq 1$. $P(X > (1 + \delta)\mathbb{E}[X]) \leq e^{-\delta^2 \mu/3}$

$$Y_{i_1, \dots, Y_n} \sim \text{Bernolli}(p) \quad X = \mathcal{E} \quad Y_i$$

IEIXJ=n

Subsection 2

Streaming and Sketching Algorithms

Intro to Streaming Algorithms

• Streaming model: your algorithm receives inputs one-by-one, and you don't know how many inputs you'll receive. Too many inputs to store them all and compute later

many elements to store in memory! 400 => sublinear space ex: vou receive a stream of Youtub Video Views. want the k most watched videos today teep a data structure with O(1c) space, and update flat when you see a udded [Misva-Gries!]

Intro to Streaming Algorithms

- Streaming model: your algorithm receives inputs one-by-one, and you don't know how many inputs you'll receive. Too many inputs to store them all and compute later
- (*) Example: suppose you want to calculate the k most watched YouTube videos today. It takes too much space to store all the YouTube videos and associated view counters, so you want an algorithm that does the following: upon recieving a YouTube video ID, update some data structure and continue without storing anything on disk. At the end of the day, this data structure should tell you the k most viewed videos.

Intro to Streaming Algorithms

- Streaming model: your algorithm receives inputs one-by-one, and you don't know how many inputs you'll receive. Too many inputs to store them all and compute later
- (*) Example: suppose you want to calculate the k most watched YouTube videos today. It takes too much space to store all the YouTube videos and associated view counters, so you want an algorithm that does the following: upon recieving a YouTube video ID, update some data structure and continue without storing anything on disk. At the end of the day, this data structure should tell you the k most viewed videos.
- (*) The above is possible to do *exactly* with only O(k) space, but this is rare. Most streaming algorithms will only output approximates that are good with some probability

output a vandam variable Z

$$\frac{|E[Z] = g(d)|}{|D_T is our stream}$$
generally, $\frac{Var(Z) \leq g(d)}{|D_T|}$

$$Z^* = \frac{1}{N} \sum_{i} our stream$$

$$generally, \frac{Var(Z) \leq g(d)}{|D_T|} \geq \frac{1}{2} \sum_{i} uhere Z_i is an II copy$$
of alg.
$$Var(Z^*) = \frac{1}{N} Var(Z)$$

$$P\{Z^* - g(d)| \geq g(d) \leq \frac{1}{2} \longrightarrow (1600)$$

$$P\{Z^* - g(d)| \geq g(d) \leq \frac{1}{2} \longrightarrow (1600)$$

$$P\{Z^* - g(d)| \geq g(d) \geq \frac{1}{2} \leq \frac{1}{2} \longrightarrow (1600)$$

$$P\{Z^* - g(d)| \geq g(d) \geq \frac{1}{2} \leq \frac{1}{2} \longrightarrow (1600)$$

$$P\{Z^* - g(d)| \geq g(d) \geq \frac{1}{2} \leq \frac{1}{2} \longrightarrow (1600)$$

$$P\{Z^* - g(d)| \geq \frac{1}{2} (\frac{1}{2} - g(d)| \geq \frac{1}{2} \leq \frac{1}{2} \longrightarrow (1600)$$

$$P\{Z^* - g(d)| \geq \frac{1}{2} (\frac{1}{2} - g(d)| \geq \frac{1}{2} \leq \frac{1}{2} \longrightarrow (1600)$$

$$P\{Z^* - g(d)| \geq \frac{1}{2} (\frac{1}{2} - g(d)| \geq \frac{1}{2} = \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \xrightarrow{1} (\frac{1}{2} - g(d)| \geq \frac{1}{2} + \frac{1}{2}$$

A Template for Sketching Algorithms

- First, output a random variable Z such that $\mathbb{E}[Z] = g(\sigma)$ where $g(\sigma)$ is the function we're estimating for the stream σ
- Usually Z will have high variance, typically $\operatorname{Var}(Z) \leq g(\sigma)$
- How to reduce variance? Run the streaming algorithm h times in parallel, and let $Z^* = \frac{1}{h} \sum Z_i$

$$\operatorname{Var}(Z^*) = \frac{1}{h} \operatorname{Var}(Z_1) \text{ and } \mathbb{E}[Z^*] = \mathbb{E}[Z_1]$$

• (*) By Chebyshev's inequality,

$$P(|Z^* - g(\sigma)| > \epsilon g(\sigma)) \le \frac{\epsilon^2}{h}$$

• (*) So, pick $h = \frac{4}{\epsilon^2}$ for constant failure probability of $\frac{1}{4}$

• Next goal: $|Z^* - g(\sigma)| > \epsilon g(\sigma)$ with some small probability δ

- Next goal: $|Z^* g(\sigma)| > \epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta\epsilon^2}\right)$ parallel copies. We want to do better

- Next goal: $|Z^* g(\sigma)| > \epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta\epsilon^2}\right)$ parallel copies. We want to do better
- Consider parallel copies Z_1^*,\ldots,Z_k^* that each fail with probability 1/4

- Next goal: $|Z^* g(\sigma)| > \epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta\epsilon^2}\right)$ parallel copies. We want to do better
- Consider parallel copies Z_1^*, \ldots, Z_k^* that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?

- Next goal: $|Z^* g(\sigma)| > \epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta\epsilon^2}\right)$ parallel copies. We want to do better
- Consider parallel copies Z_1^*, \ldots, Z_k^* that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?
- (*) Let $X_i = 1$ iff the *i*th parallel copy fails, so then $X_i \sim \text{Bernoulli}(1/4)$

- Next goal: $|Z^* g(\sigma)| > \epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta\epsilon^2}\right)$ parallel copies. We want to do better
- Consider parallel copies Z_1^*,\ldots,Z_k^* that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?
- (*) Let $X_i = 1$ iff the *i*th parallel copy fails, so then $X_i \sim \text{Bernoulli}(1/4)$
- (*) Define $X = \sum X_i$, so then $\mathbb{E}[X] = \frac{k}{4}$

- Next goal: $|Z^* g(\sigma)| > \epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta\epsilon^2}\right)$ parallel copies. We want to do better
- Consider parallel copies Z_1^*,\ldots,Z_k^* that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?
- (*) Let $X_i = 1$ iff the *i*th parallel copy fails, so then $X_i \sim \text{Bernoulli}(1/4)$
- (*) Define $X = \sum X_i$, so then $\mathbb{E}[X] = \frac{k}{4}$
- (*) By Chernoff bound,

$$\mathcal{P}\left(X \ge (1+1)\frac{k}{4}\right) \le e^{-k/12}$$

- Next goal: $|Z^* g(\sigma)| > \epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta\epsilon^2}\right)$ parallel copies. We want to do better
- Consider parallel copies Z_1^*,\ldots,Z_k^* that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?
- (*) Let $X_i = 1$ iff the *i*th parallel copy fails, so then $X_i \sim \text{Bernoulli}(1/4)$
- (*) Define $X = \sum X_i$, so then $\mathbb{E}[X] = \frac{k}{4}$
- (*) By Chernoff bound,

$$\mathcal{P}\left(X \ge (1+1)\frac{k}{4}\right) \le e^{-k/12}$$

• (*) So, pick $k = O(\log(1/\delta))$. Only running $O\left(\frac{\log(\frac{1}{\delta})}{\epsilon^2}\right)$

Section 2

Streaming ℓ_2 Estimation

Frequency Moment Estimation

• Problem: we receive a stream σ of values $e_1, \dots \in \mathbb{Z}$ where $1 \leq e_i \leq n$ for some n we know apriori

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_1, \dots \in \mathbb{Z}$ where $1 \leq e_i \leq n$ for some n we know apriori
- Define the frequency vector to be $f(\sigma) = (f_1, \ldots, f_n)$ where f_i is the number of times we've seen i

$$f = \{2, 0, 0, 0, 1, 0, 1\}$$

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_1, \dots \in \mathbb{Z}$ where $1 \leq e_i \leq n$ for some n we know apriori
- Define the frequency vector to be $f(\sigma) = (f_1, \ldots, f_n)$ where f_i is the number of times we've seen i
- Goal: estimate $||f(\sigma)||_2^2$ with only O(polylog(n)) space

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_1, \dots \in \mathbb{Z}$ where $1 \leq e_i \leq n$ for some n we know apriori
- Define the frequency vector to be $f(\sigma) = (f_1, \ldots, f_n)$ where f_i is the number of times we've seen i
- Goal: estimate $||f(\sigma)||_2^2$ with only O(polylog(n)) space
- Recall the definition of L_2 norm:

$$||f(\sigma)||_2^2 = \sum_{i=1}^n f_i^2$$

AMS F2 Estimation

• Intuition: keep a single variable Z so that we can output Z^2 as our estimate of $||f(\sigma)||_2^2$ $[f(\sigma)] \leq ||f(\sigma)||_2^2$

AMS F2 Estimation

- Intuition: keep a single variable Z so that we can output Z^2 as our estimate of $||f(\sigma)||_2^2$
- (*) Idea: create some random variable Y_i for each index so that $\mathbb{E}[Z^2] = ||f(\sigma)||_2^2$. In particular, $Z = \sum Y_i f_i$

$$\mathbb{E}[Z^2] = \sum f_i^2 Y_i^2 + 2 \sum_{i \neq j} f_i f_j Y_i Y_j$$

• (*) We need Y_i to be pairwise independent and satisfy $\mathbb{E}[Y_iY_j] = 0$ and $\mathbb{E}[Y_i^2] = 1$

AMS F2 Estimation

- Intuition: keep a single variable Z so that we can output Z^2 as our estimate of $||f(\sigma)||_2^2$
- (*) Idea: create some random variable Y_i for each index so that $\mathbb{E}[Z^2] = ||f(\sigma)||_2^2$. In particular, $Z = \sum Y_i f_i$

$$\mathbb{E}[Z^2] = \sum f_i^2 Y_i^2 + 2 \sum_{i \neq j} f_i f_j Y_i Y_j$$

- (*) We need Y_i to be pairwise independent and satisfy $\mathbb{E}[Y_iY_j] = 0$ and $\mathbb{E}[Y_i^2] = 1$
- (*) Solution: $Y_i = 1$ with probability $\frac{1}{2}$ and $Y_i = -1$ with probability $\frac{1}{2}$

- Creating O(n) random variables takes up too much space!
- Solution: O(1)-wise independent hash family of functions $[n] \rightarrow \{-1, 1\}$ can be stored in O(polylog(n)) space

$$Z = \Im F_c h(i)$$

when we see $e \in (n)$
 $z^{+} = h(e)$

- Creating O(n) random variables takes up too much space!
- Solution: O(1)-wise independent hash family of functions $[n] \to \{-1, 1\}$ can be stored in O(polylog(n)) space
- (*) Replace each Y_i with h(i), and the analysis is the exact same

- Creating O(n) random variables takes up too much space!
- Solution: O(1)-wise independent hash family of functions $[n] \to \{-1, 1\}$ can be stored in O(polylog(n)) space
- (*) Replace each Y_i with h(i), and the analysis is the exact same
- (*) Similar analysis shows $\mathbb{E}[Z^4] \leq 2||f(\sigma)||_2^2$, so we can apply average and median idea from before

- Creating O(n) random variables takes up too much space!
- Solution: O(1)-wise independent hash family of functions $[n] \to \{-1, 1\}$ can be stored in O(polylog(n)) space
- (*) Replace each Y_i with h(i), and the analysis is the exact same
- (*) Similar analysis shows $\mathbb{E}[Z^4] \leq 2||f(\sigma)||_2^2$, so we can apply average and median idea from before

```
def ams_f2:

let h be a hash function from hash family H

let z = 0

while i is an item from stream

z = z + h(i)

output z
```


Extending F2 Estimation

- Note that we never used the fact that f_i was positive or integral
- Richer model: receive a stream of updates of the form (i, Δ_i) representing a change to the *i*th coordinate of our vector

Extending F2 Estimation

- Note that we never used the fact that f_i was positive or integral
- Richer model: receive a stream of updates of the form (i, Δ_i) representing a change to the *i*th coordinate of our vector

```
def 12 estimate:
    let h be a hash function from hash family H
    let z = 0
    while (i,d) is an item from stream
         z = z + h(i)d
    output 2
     alog is a func ( let \sigma_1 and \sigma_2 be stream a

C(\sigma_1, \sigma_2) = ((\sigma_1) + ((\sigma_2))
```

$$\begin{array}{c}
\begin{array}{c}
 n \\
 N_{1}(1) & N_{1}(2) \\
 N_{2}(1) & N_{1}(2) \\
 & \vdots \\
 & N_{2}(1) \\$$

Section 3

From Stream to Matrix

- What we just created is a linear sketch: call our algorithm C. We can show that $C(\sigma_1 + \sigma_2) = C(\sigma_1) + C(\sigma_2)$, since each iteration we add to Z
- (*) Geometric interpretation: our algorithm is an $\frac{\log(1/\delta)\log n}{\epsilon^2} \times n$ matrix M of $\{-1, 1\}$ values, each row is a parallel copy of the streaming algorithm

- What we just created is a linear sketch: call our algorithm C. We can show that $C(\sigma_1 + \sigma_2) = C(\sigma_1) + C(\sigma_2)$, since each iteration we add to Z
- (*) Geometric interpretation: our algorithm is an $\frac{\log(1/\delta)\log n}{\epsilon^2} \times n$ matrix M of $\{-1, 1\}$ values, each row is a parallel copy of the streaming algorithm
- (*) Now we have Mx = y where y is a vector whose length is similar to that of x but is in lower dimension

- What we just created is a linear sketch: call our algorithm C. We can show that $C(\sigma_1 + \sigma_2) = C(\sigma_1) + C(\sigma_2)$, since each iteration we add to Z
- (*) Geometric interpretation: our algorithm is an $\frac{\log(1/\delta)\log n}{\epsilon^2} \times n$ matrix M of $\{-1, 1\}$ values, each row is a parallel copy of the streaming algorithm
- (*) Now we have Mx = y where y is a vector whose length is similar to that of x but is in lower dimension
- (*) Next goal: generalize this idea so that we can reduce the dimension of a *set* of vectors while preserving pairwise distances

- What we just created is a linear sketch: call our algorithm C. We can show that $C(\sigma_1 + \sigma_2) = C(\sigma_1) + C(\sigma_2)$, since each iteration we add to Z
- (*) Geometric interpretation: our algorithm is an $\frac{\log(1/\delta)\log n}{\epsilon^2} \times n$ matrix M of $\{-1, 1\}$ values, each row is a parallel copy of the streaming algorithm
- (*) Now we have Mx = y where y is a vector whose length is similar to that of x but is in lower dimension
- (*) Next goal: generalize this idea so that we can reduce the dimension of a *set* of vectors while preserving pairwise distances
- (*) Useful in real-world applications such as nearest neighbors, ML, etc

The JL Lemma

- Let M be an $k \times n$ matrix where each entry is chosen independently from $\mathcal{N}(0,1)$
- Claim: for $k = \Omega\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, we have that with probability 1δ , $||\frac{1}{\sqrt{k}}Mx||_2 = (1 \pm \epsilon)||x||_2$ for fixed $x \in \mathbb{R}^n$

The JL Lemma

- Let M be an $k \times n$ matrix where each entry is chosen independently from $\mathcal{N}(0, 1)$
- Claim: for $k = \Omega\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, we have that with probability 1δ , $||\frac{1}{\sqrt{k}}Mx||_2 = (1 \pm \epsilon)||x||_2$ for fixed $x \in \mathbb{R}^n$
- Immediate corollary: Let S be a set of k vectors in \mathbb{R}^n , we can preserve pairwise distances with high probability by picking $k = \Omega\left(\frac{\log n}{\epsilon^2}\right)$

The JL Lemma

- Let M be an $k \times n$ matrix where each entry is chosen independently from $\mathcal{N}(0, 1)$
- Claim: for $k = \Omega\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, we have that with probability 1δ , $||\frac{1}{\sqrt{k}}Mx||_2 = (1 \pm \epsilon)||x||_2$ for fixed $x \in \mathbb{R}^n$
- Immediate corollary: Let S be a set of k vectors in \mathbb{R}^n , we can preserve pairwise distances with high probability by picking $k = \Omega\left(\frac{\log n}{\epsilon^2}\right)$

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal distribution

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal distribution

• (*) Let
$$y = Mx$$
, so then $y_i = \sum_{j=1}^k M_{ij} x_i$

- Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal distribution
- (*) Let y = Mx, so then $y_i = \sum_{j=1}^k M_{ij} x_i$
- (*) y is a Normal vector in \mathbb{R}^k , and each y_i is $\mathcal{N}(0,1)$ (variance because $\sum x_i^2 = 1$)

- Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal distribution
- (*) Let y = Mx, so then $y_i = \sum_{j=1}^k M_{ij} x_i$
- (*) y is a Normal vector in \mathbb{R}^k , and each y_i is $\mathcal{N}(0,1)$ (variance because $\sum x_i^2 = 1$)

• (*) Let
$$\alpha = \sum y_i^2$$
, so then $\alpha \sim \chi^2(k)$

- Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal distribution
- (*) Let y = Mx, so then $y_i = \sum_{j=1}^k M_{ij} x_i$
- (*) y is a Normal vector in \mathbb{R}^k , and each y_i is $\mathcal{N}(0,1)$ (variance because $\sum x_i^2 = 1$)

• (*) Let
$$\alpha = \sum y_i^2$$
, so then $\alpha \sim \chi^2(k)$

• (*) Thus $P((1-\epsilon)^2 k \le \alpha \le (1+\epsilon)^2 k) \ge 1 - 2e^{O(1)\epsilon^2 k}$

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal distribution

• (*) Let
$$y = Mx$$
, so then $y_i = \sum_{j=1}^k M_{ij} x_i$

• (*) y is a Normal vector in \mathbb{R}^k , and each y_i is $\mathcal{N}(0,1)$ (variance because $\sum x_i^2 = 1$)

• (*) Let
$$\alpha = \sum y_i^2$$
, so then $\alpha \sim \chi^2(k)$

• (*) Thus
$$P((1-\epsilon)^2 k \le \alpha \le (1+\epsilon)^2 k) \ge 1 - 2e^{O(1)\epsilon^2 k}$$

• (*) Picking $k = \Omega\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ gets us the probability we want

Section 4

Conclusion

• Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring
- Useful for tasks such as clustering/ML: things closer together/more similar in low dimension will be close in high dimension, so can reduce dimension and speed up clustering

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring
- Useful for tasks such as clustering/ML: things closer together/more similar in low dimension will be close in high dimension, so can reduce dimension and speed up clustering
- Coreset generation: Many hard geometric problems have fast approximate solutions via coreset technique, which generates a set S' from input S so that running an exact algorithm on S' generates a high accuracy approximation for that algorithm on S. JL technique can be used in generating coresets

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring
- Useful for tasks such as clustering/ML: things closer together/more similar in low dimension will be close in high dimension, so can reduce dimension and speed up clustering
- Coreset generation: Many hard geometric problems have fast approximate solutions via coreset technique, which generates a set S' from input S so that running an exact algorithm on S' generates a high accuracy approximation for that algorithm on S. JL technique can be used in generating coresets
- Key advantage of JL is that it is *oblivious* to data

• JL Lemma extends to preserving vector distances in *entire* subspaces of \mathbb{R}^n !

- JL Lemma extends to preserving vector distances in *entire* subspaces of \mathbb{R}^{n} !
- Let E be a linear subspace of dimension d

- JL Lemma extends to preserving vector distances in *entire* subspaces of \mathbb{R}^n !
- Let E be a linear subspace of dimension d
- Can preserve distances between vectors in E with $k = \Omega\left(\frac{d\log(1/\delta)}{\epsilon^2}\right)$

- JL Lemma extends to preserving vector distances in *entire* subspaces of \mathbb{R}^n !
- Let E be a linear subspace of dimension d
- Can preserve distances between vectors in E with $k = \Omega\left(\frac{d\log(1/\delta)}{\epsilon^2}\right)$
- Works for all vectors in E, even though there are infinitely many!

- JL Lemma extends to preserving vector distances in *entire* subspaces of \mathbb{R}^n !
- Let E be a linear subspace of dimension d
- Can preserve distances between vectors in E with $k = \Omega\left(\frac{d\log(1/\delta)}{\epsilon^2}\right)$
- Works for all vectors in E, even though there are infinitely many!
- Poof: consider partitioning the *d* dimensional unit ball into small hypercubes with small side length. Show that preserving lengths of vectors to these hypercubes is sufficient to preserve lengths of all vectors.

 $\leq q; (f;)$

