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A Probability Refresher

¢ (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that > p; =1

® A random variable X from a distribution D is a variable whose
value is randomly chosen according to some probability distribution
D. Often denoted X ~ D.

® Expected value: suppose S C R, then E[X] =Y p;S;. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

® Expectation is a linear operator: E[X + Y] = E[X] + E[Y]

® Variance: Var(X) = E[X?] — E[X]?, a low variance indicates that
most of the time, when we pick X it will be close to E[X]

> Note that for ¢ € R, Var(cX) = ¢*Var(X)
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Even More Probability

Normal distribution: N(p, 0?) = m}ﬂ exp <—% (%)2)

Normal distribution is 2-stable: for X ~ A (u1,0?) and

Y NN(:UQ?U%)v X+Y NN(Hl +,U/27U% —|—g%)

x2(k) distribution: Sum of k N(0,1) random variables, has
expected value k

Bernoulli distribution: If X ~ Bernoulli(p), X is 1 with probability
p and 0 with probability (1 — p)
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Independence and Inequalities

A set of random variables is k-wise independent iff for any &
variables in the set, f(x1,...,zx) = f(x1) - f(a)

For k-wise independent random variables, E {Hle Xi] = H?Zl E[x;]

> Important: k-wise independence implies (k — 1)-wise independence
Chebyshev’s inequality: P(|X — E[X]| > ko) < k%
Chernoff bound: Let X be sum of h fully independent Bernoulli
RVs, and 6 > 1. P(X > (1+ §)E[X]) < e 9n/3
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Streaming and Sketching Algorithms



Intro to Streaming Algorithms

e Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later



A Template for Sketching Algorithms

¢ First, output a random variable Z such that E[Z] = g(o) where
g(0) is the function we’re estimating for the stream o

e Usually Z will have high variance, typically Var(Z) < g(o)

® How to reduce variance? Run the streaming algorithm A times in
parallel, and let Z* = %Z Z;
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The Median Trick

e Next goal: |Z* — g(0)| > eg(o) with some small probability &

e Naive approach: do Chebyshev’s again. Requires O (6%) parallel
copies. We want to do better

¢ Consider parallel copies Z7, ..., Z; that each fail with probability
1/4

® QOur intuition tells us the median of these estimators should be
“good" but how good?
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Frequency Moment Estimation

Problem: we receive a stream o of values ey, --- € Z where
1 < e; < n for some n we know apriori

Define the frequency vector to be f(o) = (f1,..., fn) where f; is the
number of times we’ve seen ¢

Goal: estimate ||f(o)||3 with only O(polylog(n)) space

Recall the definition of Lo norm:

If ()5 =D f
=1



AMS F2 Estimation

e Intuition: keep a single variable Z so that we can output Z2 as our
estimate of || f(o)||3



AMS F2 Estimation Continued

¢ Creating O(n) random variables takes up too much space!

® Solution: O(1)-wise independent hash family of functions
[n] — {—1,1} can be stored in O(polylog(n)) space

def ams_f2:
let h be a hash function from hash family H
let z =0
while i is an item from stream
z =z + h(i)
output z
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® Richer model: receive a stream of updates of the form (i, A;)
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Extending F2 Estimation

® Note that we never used the fact that f; was positive or integral

® Richer model: receive a stream of updates of the form (i, A;)
representing a change to the ith coordinate of our vector

def 12_estimate:
let h be a hash function from hash family H
let z =0
while (i,d) is an item from stream
z =z + h(i)d
output z
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From Stream to Matrix



Linear Sketching

® What we just created is a linear sketch: call our algorithm C. We
can show that C(o1 4+ 02) = C(01) + C(02), since each iteration we
add to Z
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® Let M be an k x n matrix where each entry is chosen independently
from N(0,1)
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JL Lemma: Idea of Proof

* Fix some vector x (wlog, let ||z|| = 1) and use 2-stability of Normal
distribution
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Conclusion
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JL Lemma: Intuition and Application

® Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

e Useful for tasks such as clustering/ML: things closer together/more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

e (Coreset generation: Many hard geometric problems have fast
approximate solutions via coreset technique, which generates a set
S’ from input S so that running an exact algorithm on S generates
a high accuracy approximation for that algorithm on S. JL
technique can be used in generating coresets

¢ Key advantage of JL is that it is oblivious to data
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One more thing. ..

¢ JL Lemma extends to preserving vector distances in entire
subspaces of R™!

® Let E be a linear subspace of dimension d
dlog(l/d))
62

® (Can preserve distances between vectors in E with k = Q) <

e Works for all vectors in E, even though there are infinitely many!

® Poof: consider partitioning the d dimensional unit ball into small
hypercubes with small side length. Show that preserving lengths of
vectors to these hypercubes is sufficient to preserve lengths of all
vectors.
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