Week 11
Streaming Algorithms and the JL Lemma

Ryan Ziegler

Outline

Background
Probability
Streaming and Sketching Algorithms

Streaming ℓ_{2} Estimation

From Stream to Matrix

Conclusion

Section 1

Background

Subsection 1

Probability

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X]=\sum p_{i} S_{i}$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X]=\sum p_{i} S_{i}$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.
- Expectation is a linear operator: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X]=\sum p_{i} S_{i}$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.
- Expectation is a linear operator: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- Variance: $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$, a low variance indicates that most of the time, when we pick X it will be close to $\mathbb{E}[X]$

A Probability Refresher

- (Discrete) probability distribution: given a set S assign some probability p_{i} to each element, so that $\sum p_{i}=1$
- A random variable X from a distribution D is a variable whose value is randomly chosen according to some probability distribution D. Often denoted $X \sim D$.
- Expected value: suppose $S \subseteq \mathbb{R}$, then $\mathbb{E}[X]=\sum p_{i} S_{i}$. Intuitively, if we picked a bunch of X following D, this is the average value we'd see.
- Expectation is a linear operator: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- Variance: $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$, a low variance indicates that most of the time, when we pick X it will be close to $\mathbb{E}[X]$
- Note that for $c \in \mathbb{R}, \operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$

Even More Probability

- Normal distribution: $\mathcal{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$

Even More Probability

- Normal distribution: $\mathcal{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$
- Normal distribution is 2 -stable: for $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right), X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$

Even More Probability

- Normal distribution: $\mathcal{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$
- Normal distribution is 2-stable: for $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right), X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$
- $\chi^{2}(k)$ distribution: Sum of $k \mathcal{N}(0,1)$ random variables, has expected value k

Even More Probability

- Normal distribution: $\mathcal{N}\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$
- Normal distribution is 2-stable: for $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right), X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$
- $\chi^{2}(k)$ distribution: Sum of $k \mathcal{N}(0,1)$ random variables, has expected value k
- Bernoulli distribution: If $X \sim \operatorname{Bernoulli}(p), X$ is 1 with probability p and 0 with probability $(1-p)$

Independence and Inequalities

- A set of random variables is k-wise independent iff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$

Independence and Inequalities

- A set of random variables is k-wise independent iff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \mathbb{E}\left[x_{i}\right]$

Independence and Inequalities

- A set of random variables is k-wise independent iff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \mathbb{E}\left[x_{i}\right]$
- Important: k-wise independence implies $(k-1)$-wise independence

Independence and Inequalities

- A set of random variables is k-wise independent iff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \mathbb{E}\left[x_{i}\right]$
- Important: k-wise independence implies $(k-1)$-wise independence
- Chebyshev's inequality: $\mathrm{P}(|X-\mathbb{E}[X]| \geq k \sigma) \leq \frac{1}{k^{2}}$

Independence and Inequalities

- A set of random variables is k-wise independent iff for any k variables in the set, $f\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right) \cdots f\left(x_{k}\right)$
- For k-wise independent random variables, $\mathbb{E}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \mathbb{E}\left[x_{i}\right]$
- Important: k-wise independence implies $(k-1)$-wise independence
- Chebyshev's inequality: $\mathrm{P}(|X-\mathbb{E}[X]| \geq k \sigma) \leq \frac{1}{k^{2}}$
- Chernoff bound: Let X be sum of h fully independent Bernoulli RVs, and $\delta \geq 1 . \mathrm{P}(X>(1+\delta) \mathbb{E}[X]) \leq e^{-\delta^{2} \mu / 3}$

Subsection 2

Streaming and Sketching Algorithms

Intro to Streaming Algorithms

- Streaming model: your algorithm receives inputs one-by-one, and you don't know how many inputs you'll receive. Too many inputs to store them all and compute later

A Template for Sketching Algorithms

- First, output a random variable Z such that $\mathbb{E}[Z]=g(\sigma)$ where $g(\sigma)$ is the function we're estimating for the stream σ
- Usually Z will have high variance, typically $\operatorname{Var}(Z) \leq g(\sigma)$
- How to reduce variance? Run the streaming algorithm h times in parallel, and let $Z^{*}=\frac{1}{h} \sum Z_{i}$

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better
- Consider parallel copies $Z_{1}^{*}, \ldots, Z_{k}^{*}$ that each fail with probability $1 / 4$

The Median Trick

- Next goal: $\left|Z^{*}-g(\sigma)\right|>\epsilon g(\sigma)$ with some small probability δ
- Naive approach: do Chebyshev's again. Requires $O\left(\frac{1}{\delta \epsilon^{2}}\right)$ parallel copies. We want to do better
- Consider parallel copies $Z_{1}^{*}, \ldots, Z_{k}^{*}$ that each fail with probability 1/4
- Our intuition tells us the median of these estimators should be "good" but how good?

Section 2
Streaming ℓ_{2} Estimation

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_{1}, \cdots \in \mathbb{Z}$ where $1 \leq e_{i} \leq n$ for some n we know apriori

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_{1}, \cdots \in \mathbb{Z}$ where $1 \leq e_{i} \leq n$ for some n we know apriori
- Define the frequency vector to be $f(\sigma)=\left(f_{1}, \ldots, f_{n}\right)$ where f_{i} is the number of times we've seen i

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_{1}, \cdots \in \mathbb{Z}$ where $1 \leq e_{i} \leq n$ for some n we know apriori
- Define the frequency vector to be $f(\sigma)=\left(f_{1}, \ldots, f_{n}\right)$ where f_{i} is the number of times we've seen i
- Goal: estimate $\|f(\sigma)\|_{2}^{2}$ with only $O(\operatorname{poly} \log (n))$ space

Frequency Moment Estimation

- Problem: we receive a stream σ of values $e_{1}, \cdots \in \mathbb{Z}$ where $1 \leq e_{i} \leq n$ for some n we know apriori
- Define the frequency vector to be $f(\sigma)=\left(f_{1}, \ldots, f_{n}\right)$ where f_{i} is the number of times we've seen i
- Goal: estimate $\|f(\sigma)\|_{2}^{2}$ with only $O(\operatorname{poly} \log (n))$ space
- Recall the definition of L_{2} norm:

$$
\|f(\sigma)\|_{2}^{2}=\sum_{i=1}^{n} f_{i}^{2}
$$

AMS F2 Estimation

- Intuition: keep a single variable Z so that we can output Z^{2} as our estimate of $\|f(\sigma)\|_{2}^{2}$

AMS F2 Estimation Continued

- Creating $O(n)$ random variables takes up too much space!
- Solution: $O(1)$-wise independent hash family of functions $[n] \rightarrow\{-1,1\}$ can be stored in $O(\operatorname{polylog}(n))$ space

```
def ams_f2:
    let h be a hash function from hash family H
    let z = 0
    while i is an item from stream
        z = z + h(i)
    output z
```


Extending F2 Estimation

- Note that we never used the fact that f_{i} was positive or integral
- Richer model: receive a stream of updates of the form $\left(i, \Delta_{i}\right)$ representing a change to the i th coordinate of our vector

Extending F2 Estimation

- Note that we never used the fact that f_{i} was positive or integral
- Richer model: receive a stream of updates of the form $\left(i, \Delta_{i}\right)$ representing a change to the i th coordinate of our vector

```
def l2_estimate:
    let h be a hash function from hash family H
let z = 0
while (i,d) is an item from stream
    z = z + h(i)d
output z
```


Section 3

From Stream to Matrix

Linear Sketching

- What we just created is a linear sketch: call our algorithm C. We can show that $C\left(\sigma_{1}+\sigma_{2}\right)=C\left(\sigma_{1}\right)+C\left(\sigma_{2}\right)$, since each iteration we add to Z

The JL Lemma

- Let M be an $k \times n$ matrix where each entry is chosen independently from $\mathcal{N}(0,1)$
- Claim: for $k=\Omega\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, we have that with probability $1-\delta$, $\left\|\frac{1}{\sqrt{k}} M x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ for fixed $x \in \mathbb{R}^{n}$

The JL Lemma

- Let M be an $k \times n$ matrix where each entry is chosen independently from $\mathcal{N}(0,1)$
- Claim: for $k=\Omega\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, we have that with probability $1-\delta$, $\left\|\frac{1}{\sqrt{k}} M x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ for fixed $x \in \mathbb{R}^{n}$
- Immediate corollary: Let S be a set of k vectors in \mathbb{R}^{n}, we can preserve pairwise distances with high probability by picking $k=\Omega\left(\frac{\log n}{\epsilon^{2}}\right)$

The JL Lemma

- Let M be an $k \times n$ matrix where each entry is chosen independently from $\mathcal{N}(0,1)$
- Claim: for $k=\Omega\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, we have that with probability $1-\delta$, $\left\|\frac{1}{\sqrt{k}} M x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ for fixed $x \in \mathbb{R}^{n}$
- Immediate corollary: Let S be a set of k vectors in \mathbb{R}^{n}, we can preserve pairwise distances with high probability by picking $k=\Omega\left(\frac{\log n}{\epsilon^{2}}\right)$

JL Lemma: Idea of Proof

- Fix some vector x (wlog, let $\|x\|=1$) and use 2-stability of Normal distribution

Section 4

Conclusion

JL Lemma: Intuition and Application

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring

JL Lemma: Intuition and Application

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring
- Useful for tasks such as clustering/ML: things closer together/more similar in low dimension will be close in high dimension, so can reduce dimension and speed up clustering

JL Lemma: Intuition and Application

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring
- Useful for tasks such as clustering/ML: things closer together/more similar in low dimension will be close in high dimension, so can reduce dimension and speed up clustering
- Coreset generation: Many hard geometric problems have fast approximate solutions via coreset technique, which generates a set S^{\prime} from input S so that running an exact algorithm on S^{\prime} generates a high accuracy approximation for that algorithm on S. JL technique can be used in generating coresets

JL Lemma: Intuition and Application

- Why does projecting to a random subspace work? A large enough random subspace means errors induced by "bad vectors" (i.e. those orthogonal to many rows in the matrix) have extremely low probability of ocurring
- Useful for tasks such as clustering/ML: things closer together/more similar in low dimension will be close in high dimension, so can reduce dimension and speed up clustering
- Coreset generation: Many hard geometric problems have fast approximate solutions via coreset technique, which generates a set S^{\prime} from input S so that running an exact algorithm on S^{\prime} generates a high accuracy approximation for that algorithm on S. JL technique can be used in generating coresets
- Key advantage of JL is that it is oblivious to data

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !
- Let E be a linear subspace of dimension d

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !
- Let E be a linear subspace of dimension d
- Can preserve distances between vectors in E with $k=\Omega\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !
- Let E be a linear subspace of dimension d
- Can preserve distances between vectors in E with $k=\Omega\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$
- Works for all vectors in E, even though there are infinitely many!

One more thing. . .

- JL Lemma extends to preserving vector distances in entire subspaces of \mathbb{R}^{n} !
- Let E be a linear subspace of dimension d
- Can preserve distances between vectors in E with $k=\Omega\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$
- Works for all vectors in E, even though there are infinitely many!
- Poof: consider partitioning the d dimensional unit ball into small hypercubes with small side length. Show that preserving lengths of vectors to these hypercubes is sufficient to preserve lengths of all vectors.

