The PACE 2023 Challenge: Twin-Width

Anakin

Outline

What is Twin-width?

Computing Twin-width

PACE 2023

Section 1

What is Twin-width?

What is Twin-width?

- A large part of combinatorics is defining useful measures of the complexity of structures

What is Twin-width?

- A large part of combinatorics is defining useful measures of the complexity of structures
- How easy is it to construct the object?

What is Twin-width?

- A large part of combinatorics is defining useful measures of the complexity of structures
- How easy is it to construct the object?
- Algorithmic Complexity

What is Twin-width?

- A large part of combinatorics is defining useful measures of the complexity of structures
- How easy is it to construct the object?
- Algorithmic Complexity
- Efficient encodings

What is Twin-width?

- A large part of combinatorics is defining useful measures of the complexity of structures
- How easy is it to construct the object?
- Algorithmic Complexity
- Efficient encodings
- Decomposition

Operations on Graphs: Disjoint Union

Operations on Graphs: Disjoint Union

Operations on Graphs: Complement

Operations on Graphs: Complement

000
000

Operations on Graphs: Complement

Cographs

We now construct the class of cographs

Cographs

We now construct the class of cographs

- K_{1} is a cograph
- The disjoint union of two cographs is also a cograph
- The complement of a cograph is a cograph

Relating Other Graphs to Cographs

- This efficient way of constructing and decomposing these graphs is useful for many algorithms
- Example: Finding the largest complete subgraph of a graph

Relating Other Graphs to Cographs

- This efficient way of constructing and decomposing these graphs is useful for many algorithms
- Example: Finding the largest complete subgraph of a graph
- However, not every graph is a cograph
- Can we generalize this by adding some sort of error measure?

Relating Other Graphs to Cographs

- This efficient way of constructing and decomposing these graphs is useful for many algorithms
- Example: Finding the largest complete subgraph of a graph
- However, not every graph is a cograph
- Can we generalize this by adding some sort of error measure?
- This is called twin-width [BKTW20]

Contractions

- Throughout this presentation, $G=(V, E)$ will be a connected undirected graph

Contractions

- Throughout this presentation, $G=(V, E)$ will be a connected undirected graph
- Before we can talk about twin-width, we first talk about contractions of a graph

Contractions

- Throughout this presentation, $G=(V, E)$ will be a connected undirected graph
- Before we can talk about twin-width, we first talk about contractions of a graph
- Our edges in E will have a color associated with them: black or red.
- The red edges will be our error that we want
- Vertices are black neighbors if linked by a black edge, and red neighbors if linked by a red edge

Contractions by picture

Formal Definition of Contraction

Suppose we are contracting two nodes u, v in G into one node called $u v$.

- For every neighbor x of u or v :

Formal Definition of Contraction

Suppose we are contracting two nodes u, v in G into one node called $u v$.

- For every neighbor x of u or v :
- If x is a black neighbor of both u and v, then x is now a black neighbor of $u v$
- Otherwise, x is a red neighbor of u and v

Formal Definition of Contraction

Suppose we are contracting two nodes u, v in G into one node called $u v$.

- For every neighbor x of u or v :
- If x is a black neighbor of both u and v, then x is now a black neighbor of $u v$
- Otherwise, x is a red neighbor of u and v
- All other edges are left alone and maintain their color

Twin-width

- Repeatedly applying the contraction operation to nodes of G produces a contraction sequence of graphs $G=G_{n} \rightarrow G_{n-1} \rightarrow \cdots \rightarrow G_{2} \rightarrow G_{1}=K_{1}$

Twin-width

- Repeatedly applying the contraction operation to nodes of G produces a contraction sequence of graphs $G=G_{n} \rightarrow G_{n-1} \rightarrow \cdots \rightarrow G_{2} \rightarrow G_{1}=K_{1}$
- The sequence is a d-sequence if the maximum number of red edges in any of the G_{i} in the contraction sequence is d

Twin-width

- Repeatedly applying the contraction operation to nodes of G produces a contraction sequence of graphs $G=G_{n} \rightarrow G_{n-1} \rightarrow \cdots \rightarrow G_{2} \rightarrow G_{1}=K_{1}$
- The sequence is a d-sequence if the maximum number of red edges in any of the G_{i} in the contraction sequence is d
- The twin-width of G is the minimum d such that there exists a d-sequence of G

Observations

- The graph remains connected as we do this

Observations

- The graph remains connected as we do this
- This process will terminate (finitely many nodes and edges)

Observations

- The graph remains connected as we do this
- This process will terminate (finitely many nodes and edges)
- The number of red edges may increase or decrease

Why do We Care?

- We can speed up certain algorithms

Why do We Care?

- We can speed up certain algorithms
- If we have the d-sequence for a graph, we can decompose the graph into complete bipartite graphs and do breadth-first-search in $O(n \log n)$ time $\left[\mathrm{BGK}^{+} 20\right]$
- This works even if the number of edges is $O\left(n^{2}\right)$

Section 2

Computing Twin-width

It's Hard

- There are very few practical algorithms for computing the twin-width of a graph in general

It's Hard

- There are very few practical algorithms for computing the twin-width of a graph in general
- There are some things known for special cases
- Cographs are the graphs with twin-width zero
- d-dimensional graphs have twin-width $\leq 3 d$ [BKTW20]
- Planar graphs have twin-width ≤ 9, and bipartite planar graphs have twin-width ≤ 6 [Hli22]
- Graphs with 4 vertices have twin-width ≤ 1 and graphs with 5 vertices have twin-width ≤ 2 [Das22]
- In general, bipartite graphs may have arbitrarily large twin-width

SAT Solvers

- Given a boolean formula consisting of variables, and gates, and or gates, we want to find a satisfying assignment

SAT Solvers

- Given a boolean formula consisting of variables, and gates, and or gates, we want to find a satisfying assignment
- This is a problem that appears in many places, so readily available SAT Solvers exist

SAT Solvers

- Given a boolean formula consisting of variables, and gates, and or gates, we want to find a satisfying assignment
- This is a problem that appears in many places, so readily available SAT Solvers exist
- [SS21] found a way to encode twin-width into a SAT formula
- This is one of the only ways we can reasonable compute twin-widths

Section 3
PACE 2023

A Programming Competition

- Parameterized Algorithms and Computational Experiments is a long-term programming competition
- Our goal will be to devise an efficient algorithm to compute the twin-width d of arbitrary graphs and their d-sequence
- Exact Track: Compute the exact sequence
- Heuristic Track: Compute an approximate sequence

The Club Submission

- I only found out about this recently so we are a bit behind
- We should make on submission on one track
- I was thinking about focusing on the exact track
- There are 100 public test cases +100 test cases
- Score $=$ the number of test cases we can solve in a given time limit
- My goal is just to put together something and see how well we do

Bibliography

\square Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set and coloring.
CorR, abs/2007.14161, 2020.Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width I: tractable FO model checking.
CoRR, abs/2004.14789, 2020.Kajal Das.
Computation of twin-width of graphs, 2022.
Petr Hliněný.
Twin-width of planar graphs is at most 9, and at most 6 when bipartite planar, 2022.
André Schidler and Stefan Szeider.
A SAT approach to twin-width.
CorR, abs/2110.06146, 2021.

