Believe It or Not, Another Semester

SIGma

Outline

Admins in No Particular Order
P vs NP
Circuits Like You've Never Seen Before

Matchings in Parallel

Updates!

Weekly updates:

- We're back!
- \#research-advice in Discord
- \#seminars in Discord
- Come make meetings

Section 1

Admins in No Particular Order

Sam

- CS PhD
- Doing Computational Geometry with Sariel Har-Peled
- SIGPwny

Hassam

- CS Major (takes math classes for fun ???)
- SIGPwny Crypto Gang + Admin team + Infra lead
- CA for CS 341, CS 173
- Compiler research (paper accepted ASPLOS '24 !!!)
- Graduating (and subsequently selling out) this semester
- Not selling out yet - currently a junior in CS
- CA for $\operatorname{CS}\{222,374,461\}$
- Interest in algorithmic game theory and fair division, currently working on approximation algorithms for division
- Attempting to do hardware

Alex

- Stats\&CS, Math Double Major
- Part of PeopleWeave Research Project
- CA for CS 225, CS 374
- Foosball Pro

Porter

- CS Major, Math Minor
- Intern at CDK Global over the summer
- CA for CS 128 H
- Foosball Pro

Anakin

- Doing research in ICLUE with Alexander Yong
- Did Computational Group Theory at an REU
- Used to do Graph Theory / Optimization Research with Sam
- SIGPwny Crypto ${ }^{1}$ Gang + Admin team
- Coffee Club
- CA for CS $173+$ CS 225 H , former $374+475$

[^0]
Come Make Meetings!

Brand New: Short and Sweet Presentations

- 3 presentations each day
- 10-15 minutes long (Short)
- Probably some food and drink (Sweet)
- March 18th \& April 22nd
- Good way to show you are interested in being a future admin

Join Discord + DM any @admin if interested

Section 2
P vs NP

Complexity Classes

- Complexity Classes are groups of problems that are characterized by being of the same "difficulty"
- "Difficulty" refers to big- O notation: If an algorithm runs in $O\left(n^{2}\right)$ time, that means as the input size n tends to infinity, the algorithm takes $c n^{2}$ time for some constant c
- Most people think about two classes:
- problems with polynomial time algorithms
- problems requiring larger-than-polynomial time algorithms

Decision Problems

- These are problems that have yes or no answers
- Examples:
- Is this list sorted?
- Does this graph have a path visiting every node exactly once (Hamiltonian path)?
- Is this number prime?

Decision Problems

- The typical computation model is a Turing Machine
- For all intents and purposes, a normal computer + your favorite programming language ${ }^{2}$
- The input size of the problem is usually part of the problem specification
- Is this list of length n sorted?
- Does this graph with n nodes have a Hamiltonian path?
- Is this n-bit binary number prime?

[^1]
Solving vs Verifying

- For decision problems, the two big paradigms are solving the problem and verifying a solution
- Consider the problem of finding a Hamiltonian path in a graph with n nodes:
- solving: Try all n ! orderings of nodes, see if any of them are a Hamiltonian path. Runs in $O(n * n!)$ time
- verifying: Given a candidate path, check if it is a Hamiltonian path. Runs in $O(n)$ time

The Million Dollar Question

- In the year 2000, the Clay Mathematics Institute posed 7 Prize Problems where the people who found the solutions would get \$1,000,000
- The P vs NP problem is about whether or not the following two complexity classes are equal:
- P: The set of decision problems with polynomial time algorithms to solve the problem
- NP: The set of decision problems with polynomial time algorithms to verify a solution

Section 3
Circuits Like You've Never Seen Before

A New (Old) Approach to P vs NP

- One of the most influencial papers in complexity theory is "Completeness classes in algebra" by Valient [Val79]
- He proposed an algebraic approach to the P vs NP problem
- This has been furthered by Mulmuley and Sohini and is currently seen as the most viable approach to resolving P vs NP
- Idea: Polynomials are our computational model

Algebraic Circuits

$$
x^{4}-4 x^{3}+2 x^{2}+4 x-3=(x-1)^{2}(x+1)(x-3)
$$

Complexity

- There are two main measures of complexity of an algebraic circuit:
- Size: Number of nodes
- Depth: Length of the longest path from an input to the output gate
- Given a polynomial f, we can ask two types of questions:
- Can we construct a circuit for f of small \{size/depth\}?
- Can we show no such small circuit for f exists?

Complexity

Recall the normal computational model for a problem with input size n :

- P: Decision problems we can solve in poly (n) time.
- NP: Decision problems whose solution we can verify in poly (n) time.
- $\mathrm{P} \subseteq \mathrm{NP}$
- $\mathrm{P} \subsetneq$ NP: Million Dollar Question

Now consider a polynomial f of degree d. We define Valient's $P / N P$:

- VP: f has a poly (d) size circuit to compute it
- VNP: Given some monomial, we can find the coefficient of the monomial in f with a $\operatorname{poly}(d)$ size circuit
- $\mathrm{VP} \subseteq \mathrm{VNP}$

A Tale of Two Polynomials

Consider an $n \times n$ matrix X with entries $x_{i, j}$
$\operatorname{det}(X)=\sum_{i=1}^{n}(-1)^{i} \cdot x_{1, i} \cdot \operatorname{det}\left(X_{-1,-i}\right) \quad \operatorname{perm}(X)=\sum_{i=1}^{n} x_{1, i} \cdot \operatorname{perm}\left(X_{-1,-i}\right)$

- $\operatorname{det}(X) \in$ VP: Gaussian Elimination gives $O\left(n^{3}\right)$ size
- $\operatorname{det}(X) \in \mathrm{VNP}: \mathrm{VP} \subseteq \mathrm{VNP}$
- $\operatorname{perm}(X) \in$ VNP: Just trust me
- $\operatorname{perm}(X) \notin$ VP: Algebraic Million Dollar Question

If $\mathrm{VP}=\mathrm{VNP}$ and the (generalized) Riemann Hypothesis holds, then " $\mathrm{P}=\mathrm{NP}$ " [B0̈0]

Section 4

Matchings in Parallel

A Match Made in Heaven

Algebraic Computation

- Determining if there is a perfect matching in a bipartite graph can be determined in polynomial time
- We will see how to do this with an algorithm that can be parallelized

Turning a Graph into a Polynomial

Given a graph $G=(V, E)$ with n vertices labeled $1, \ldots, n$, let X be a matrix such that

$$
X_{i, j}= \begin{cases}x_{i, j} & \text { if } i \leftrightarrow j \in E \\ 0 & \text { if } i \leftrightarrow j \notin E\end{cases}
$$

$$
\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & 0 & x_{1,4} \\
0 & 0 & 0 & x_{2,4} \\
x_{3,1} & x_{3,2} & 0 & 0 \\
0 & 0 & x_{4,3} & x_{4,4}
\end{array}\right)
$$

Alternate Formulation

Consider an $n \times n$ matrix X with entries $x_{i, j}$

$$
\begin{array}{ll}
\operatorname{det}(X)=\sum_{i=1}^{n}(-1)^{i} \cdot x_{1, i} \cdot \operatorname{det}\left(X_{-1,-i}\right) & \operatorname{perm}(X)=\sum_{i=1}^{n} x_{1, i} \cdot \operatorname{perm}\left(X_{-1,-i}\right) \\
\operatorname{det}(X)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) x_{1, \sigma(1)} \cdots x_{n, \sigma(n)} & \operatorname{perm}(X)=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)}
\end{array}
$$

- $S_{n}=$ set of all orderings of integers $1, \ldots, n$
- An inversion in σ is if $i<j$ and $\sigma(i)>\sigma(j)$

$$
\operatorname{sgn}(\sigma)= \begin{cases}1 & \text { if number of inversions in } \sigma \text { is even } \\ -1 & \text { if number of inversions in } \sigma \text { is odd }\end{cases}
$$

The Final Algorithm

- Let X be the matrix from before constructed from G
- Claim: $\operatorname{det}(X) \neq 0 \Longleftrightarrow G$ has a perfect matching
- Proof: Think about which orderings σ correspond to matchings
- Recall that a non-zero degree d polynomial has at most d zeroes
- $\operatorname{det}(X)$ has degree $\leq n^{2}$

$$
\begin{aligned}
& \frac{\text { Match }(G)}{X \leftarrow \text { matrix constructed from } G} \\
& f(\bar{x}) \leftarrow \operatorname{det}(X) \\
& P \& n^{2}+1 \text { distinct random points from } \mathbb{R}^{n^{2}} \\
& \text { for } \bar{p} \in P: \\
& \quad \text { if } f(\bar{p}) \neq 0: \\
& \quad \text { return TRUE } \\
& \text { return FALSE }
\end{aligned}
$$

Questions?

Algorithms are for people who don't know how to buy RAM

- Clay Shirky

Bibliography I

Peter Bürgisser

Cook's versus valiant's hypothesis.

Theoretical Computer Science, 235(1):71-88, March 2000

L. G. Valiant.

Completeness classes in algebra.
In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC '79, page 249-261, New York, NY, USA, 1979. Association for Computing Machinery.

[^0]: ${ }^{1}$ Not that one, the other one

[^1]: ${ }^{2}$ Unless your favorite language is HTML

