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Updates!

Weekly updates:

• We’re back!

• #research-advice in Discord

• #seminars in Discord

• Come make meetings



Section 1

Admins in No Particular Order



Sam

• CS PhD

• Doing Computational Geometry with Sariel Har-Peled

• SIGPwny



Hassam

• CS Major (takes math classes for fun ???)

• SIGPwny Crypto Gang + Admin team + Infra lead

• CA for CS 341, CS 173

• Compiler research (paper accepted ASPLOS ’24 !!!)

• Graduating (and subsequently selling out) this semester



Ryan

• Not selling out yet - currently a junior in CS

• CA for CS{222, 374, 461}

• Interest in algorithmic game theory and fair division, currently
working on approximation algorithms for division

• Attempting to do hardware



Alex

• Stats&CS, Math Double Major

• Part of PeopleWeave Research Project

• CA for CS 225, CS 374

• Foosball Pro



Porter

• CS Major, Math Minor

• Intern at CDK Global over the summer

• CA for CS 128H

• Foosball Pro



Anakin

• Doing research in ICLUE with Alexander Yong

• Did Computational Group Theory at an REU

• Used to do Graph Theory / Optimization Research with Sam

• SIGPwny Crypto1 Gang + Admin team

• Coffee Club

• CA for CS 173 + CS 225H, former 374 + 475

1Not that one, the other one



Come Make Meetings!

Brand New: Short and Sweet Presentations

• 3 presentations each day

• 10-15 minutes long (Short)

• Probably some food and drink (Sweet)

• March 18th & April 22nd

• Good way to show you are interested in being a future admin

Join Discord + DM any @admin if interested



Section 2

P vs NP



Complexity Classes

• Complexity Classes are groups of problems that are characterized by
being of the same “difficulty”

• “Difficulty” refers to big-O notation: If an algorithm runs in O(n2)
time, that means as the input size n tends to infinity, the algorithm
takes cn2 time for some constant c

• Most people think about two classes:

▶ problems with polynomial time algorithms

▶ problems requiring larger-than-polynomial time algorithms



Decision Problems

• These are problems that have yes or no answers

• Examples:

▶ Is this list sorted?

▶ Does this graph have a path visiting every node exactly once
(Hamiltonian path)?

▶ Is this number prime?



Decision Problems

• The typical computation model is a Turing Machine

▶ For all intents and purposes, a normal computer + your favorite
programming language2

• The input size of the problem is usually part of the problem
specification

▶ Is this list of length n sorted?

▶ Does this graph with n nodes have a Hamiltonian path?

▶ Is this n-bit binary number prime?

2Unless your favorite language is HTML



Solving vs Verifying

• For decision problems, the two big paradigms are solving the problem
and verifying a solution

• Consider the problem of finding a Hamiltonian path in a graph with
n nodes:

▶ solving: Try all n! orderings of nodes, see if any of them are a
Hamiltonian path. Runs in O(n ∗ n!) time

▶ verifying: Given a candidate path, check if it is a Hamiltonian path.
Runs in O(n) time



The Million Dollar Question

• In the year 2000, the Clay Mathematics Institute posed 7 Prize
Problems where the people who found the solutions would get
$1,000,000

• The P vs NP problem is about whether or not the following two
complexity classes are equal:

▶ P: The set of decision problems with polynomial time algorithms to
solve the problem

▶ NP: The set of decision problems with polynomial time algorithms to
verify a solution



Section 3

Circuits Like You’ve Never Seen Before



A New (Old) Approach to P vs NP

• One of the most influencial papers in complexity theory is
“Completeness classes in algebra” by Valient [Val79]

• He proposed an algebraic approach to the P vs NP problem

• This has been furthered by Mulmuley and Sohini and is currently
seen as the most viable approach to resolving P vs NP

• Idea: Polynomials are our computational model



Algebraic Circuits

x4 − 4x3 + 2x2 + 4x− 3 = (x− 1)2(x+ 1)(x− 3)



Complexity

• There are two main measures of complexity of an algebraic circuit:

▶ Size: Number of nodes

▶ Depth: Length of the longest path from an input to the output gate

• Given a polynomial f , we can ask two types of questions:

▶ Can we construct a circuit for f of small {size/depth}?

▶ Can we show no such small circuit for f exists?



Complexity

Recall the normal computational model for a problem with input size n:

• P: Decision problems we can solve in poly(n) time.

• NP: Decision problems whose solution we can verify in poly(n) time.

• P ⊆ NP

• P ⊊ NP: Million Dollar Question

Now consider a polynomial f of degree d. We define Valient’s P / NP:

• VP: f has a poly(d) size circuit to compute it

• VNP: Given some monomial, we can find the coefficient of the
monomial in f with a poly(d) size circuit

• VP ⊆ VNP



A Tale of Two Polynomials
Consider an n× n matrix X with entries xi,j

det(X) =

n∑
i=1

(−1)i · x1,i · det(X−1,−i) perm(X) =

n∑
i=1

x1,i · perm(X−1,−i)

• det(X) ∈ VP: Gaussian Elimination gives O(n3) size

• det(X) ∈ VNP: VP ⊆ VNP

• perm(X) ∈ VNP: Just trust me

• perm(X) /∈ VP: Algebraic Million Dollar Question

If VP = VNP and the (generalized) Riemann Hypothesis holds, then “P = NP”
[B0̈0]



Section 4

Matchings in Parallel



A Match Made in Heaven



Algebraic Computation

• Determining if there is a perfect matching in a bipartite graph can
be determined in polynomial time

• We will see how to do this with an algorithm that can be parallelized



Turning a Graph into a Polynomial

Given a graph G = (V,E) with n vertices labeled 1, . . . , n, let X be a
matrix such that

Xi,j =

{
xi,j if i↔ j ∈ E

0 if i↔ j /∈ E


x1,1 x1,2 0 x1,4
0 0 0 x2,4

x3,1 x3,2 0 0
0 0 x4,3 x4,4





Alternate Formulation
Consider an n× n matrix X with entries xi,j

det(X) =

n∑
i=1

(−1)i · x1,i · det(X−1,−i) perm(X) =

n∑
i=1

x1,i · perm(X−1,−i)

det(X) =
∑
σ∈Sn

sgn(σ)x1,σ(1) · · ·xn,σ(n) perm(X) =
∑
σ∈Sn

x1,σ(1) · · ·xn,σ(n)

• Sn = set of all orderings of integers 1, . . . , n

• An inversion in σ is if i < j and σ(i) > σ(j)

•

sgn(σ) =

{
1 if number of inversions in σ is even
−1 if number of inversions in σ is odd



The Final Algorithm
• Let X be the matrix from before constructed from G

• Claim: det(X) ̸= 0 ⇐⇒ G has a perfect matching

▶ Proof: Think about which orderings σ correspond to matchings

• Recall that a non-zero degree d polynomial has at most d zeroes

• det(X) has degree ≤ n2

Match(G)
X ← matrix constructed from G
f(x)← det(X)

P
$← n2 + 1 distinct random points from Rn2

for p ∈ P :
if f(p) ̸= 0:

return True
return False



Questions?



Algorithms are for people who don’t know how to buy RAM

— Clay Shirky
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