
Believe It or Not, Another Semester

SIGma

Outline

Admins in No Particular Order

P vs NP

Circuits Like You’ve Never Seen Before

Matchings in Parallel

Updates!

Weekly updates:

• We’re back!

• #research-advice in Discord

• #seminars in Discord

• Come make meetings

Section 1

Admins in No Particular Order

Sam

• CS PhD

• Doing Computational Geometry with Sariel Har-Peled

• SIGPwny

Hassam

• CS Major (takes math classes for fun ???)

• SIGPwny Crypto Gang + Admin team + Infra lead

• CA for CS 341, CS 173

• Compiler research (paper accepted ASPLOS ’24 !!!)

• Graduating (and subsequently selling out) this semester

Ryan

• Not selling out yet - currently a junior in CS

• CA for CS{222, 374, 461}

• Interest in algorithmic game theory and fair division, currently
working on approximation algorithms for division

• Attempting to do hardware

Alex

• Stats&CS, Math Double Major

• Part of PeopleWeave Research Project

• CA for CS 225, CS 374

• Foosball Pro

Porter

• CS Major, Math Minor

• Intern at CDK Global over the summer

• CA for CS 128H

• Foosball Pro

Anakin

• Doing research in ICLUE with Alexander Yong

• Did Computational Group Theory at an REU

• Used to do Graph Theory / Optimization Research with Sam

• SIGPwny Crypto1 Gang + Admin team

• Coffee Club

• CA for CS 173 + CS 225H, former 374 + 475

1Not that one, the other one

Come Make Meetings!

Brand New: Short and Sweet Presentations

• 3 presentations each day

• 10-15 minutes long (Short)

• Probably some food and drink (Sweet)

• March 18th & April 22nd

• Good way to show you are interested in being a future admin

Join Discord + DM any @admin if interested

Section 2

P vs NP

Complexity Classes

• Complexity Classes are groups of problems that are characterized by
being of the same “difficulty”

• “Difficulty” refers to big-O notation: If an algorithm runs in O(n2)
time, that means as the input size n tends to infinity, the algorithm
takes cn2 time for some constant c

• Most people think about two classes:

▶ problems with polynomial time algorithms

▶ problems requiring larger-than-polynomial time algorithms

Decision Problems

• These are problems that have yes or no answers

• Examples:

▶ Is this list sorted?

▶ Does this graph have a path visiting every node exactly once
(Hamiltonian path)?

▶ Is this number prime?

Decision Problems

• The typical computation model is a Turing Machine

▶ For all intents and purposes, a normal computer + your favorite
programming language2

• The input size of the problem is usually part of the problem
specification

▶ Is this list of length n sorted?

▶ Does this graph with n nodes have a Hamiltonian path?

▶ Is this n-bit binary number prime?

2Unless your favorite language is HTML

Solving vs Verifying

• For decision problems, the two big paradigms are solving the problem
and verifying a solution

• Consider the problem of finding a Hamiltonian path in a graph with
n nodes:

▶ solving: Try all n! orderings of nodes, see if any of them are a
Hamiltonian path. Runs in O(n ∗ n!) time

▶ verifying: Given a candidate path, check if it is a Hamiltonian path.
Runs in O(n) time

The Million Dollar Question

• In the year 2000, the Clay Mathematics Institute posed 7 Prize
Problems where the people who found the solutions would get
$1,000,000

• The P vs NP problem is about whether or not the following two
complexity classes are equal:

▶ P: The set of decision problems with polynomial time algorithms to
solve the problem

▶ NP: The set of decision problems with polynomial time algorithms to
verify a solution

Section 3

Circuits Like You’ve Never Seen Before

A New (Old) Approach to P vs NP

• One of the most influencial papers in complexity theory is
“Completeness classes in algebra” by Valient [Val79]

• He proposed an algebraic approach to the P vs NP problem

• This has been furthered by Mulmuley and Sohini and is currently
seen as the most viable approach to resolving P vs NP

• Idea: Polynomials are our computational model

Algebraic Circuits

x4 − 4x3 + 2x2 + 4x− 3 = (x− 1)2(x+ 1)(x− 3)

Complexity

• There are two main measures of complexity of an algebraic circuit:

▶ Size: Number of nodes

▶ Depth: Length of the longest path from an input to the output gate

• Given a polynomial f , we can ask two types of questions:

▶ Can we construct a circuit for f of small {size/depth}?

▶ Can we show no such small circuit for f exists?

Complexity

Recall the normal computational model for a problem with input size n:

• P: Decision problems we can solve in poly(n) time.

• NP: Decision problems whose solution we can verify in poly(n) time.

• P ⊆ NP

• P ⊊ NP: Million Dollar Question

Now consider a polynomial f of degree d. We define Valient’s P / NP:

• VP: f has a poly(d) size circuit to compute it

• VNP: Given some monomial, we can find the coefficient of the
monomial in f with a poly(d) size circuit

• VP ⊆ VNP

A Tale of Two Polynomials
Consider an n× n matrix X with entries xi,j

det(X) =

n∑
i=1

(−1)i · x1,i · det(X−1,−i) perm(X) =

n∑
i=1

x1,i · perm(X−1,−i)

• det(X) ∈ VP: Gaussian Elimination gives O(n3) size

• det(X) ∈ VNP: VP ⊆ VNP

• perm(X) ∈ VNP: Just trust me

• perm(X) /∈ VP: Algebraic Million Dollar Question

If VP = VNP and the (generalized) Riemann Hypothesis holds, then “P = NP”
[B0̈0]

Section 4

Matchings in Parallel

A Match Made in Heaven

Algebraic Computation

• Determining if there is a perfect matching in a bipartite graph can
be determined in polynomial time

• We will see how to do this with an algorithm that can be parallelized

Turning a Graph into a Polynomial

Given a graph G = (V,E) with n vertices labeled 1, . . . , n, let X be a
matrix such that

Xi,j =

{
xi,j if i↔ j ∈ E

0 if i↔ j /∈ E


x1,1 x1,2 0 x1,4
0 0 0 x2,4

x3,1 x3,2 0 0
0 0 x4,3 x4,4



Alternate Formulation
Consider an n× n matrix X with entries xi,j

det(X) =

n∑
i=1

(−1)i · x1,i · det(X−1,−i) perm(X) =

n∑
i=1

x1,i · perm(X−1,−i)

det(X) =
∑
σ∈Sn

sgn(σ)x1,σ(1) · · ·xn,σ(n) perm(X) =
∑
σ∈Sn

x1,σ(1) · · ·xn,σ(n)

• Sn = set of all orderings of integers 1, . . . , n

• An inversion in σ is if i < j and σ(i) > σ(j)

•

sgn(σ) =

{
1 if number of inversions in σ is even
−1 if number of inversions in σ is odd

The Final Algorithm
• Let X be the matrix from before constructed from G

• Claim: det(X) ̸= 0 ⇐⇒ G has a perfect matching

▶ Proof: Think about which orderings σ correspond to matchings

• Recall that a non-zero degree d polynomial has at most d zeroes

• det(X) has degree ≤ n2

Match(G)
X ← matrix constructed from G
f(x)← det(X)

P
$← n2 + 1 distinct random points from Rn2

for p ∈ P :
if f(p) ̸= 0:

return True
return False

Questions?

Algorithms are for people who don’t know how to buy RAM

— Clay Shirky

Bibliography I

Peter Bürgisser.

Cook’s versus valiant’s hypothesis.

Theoretical Computer Science, 235(1):71–88, March 2000.

L. G. Valiant.

Completeness classes in algebra.

In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79,
page 249–261, New York, NY, USA, 1979. Association for Computing Machinery.

	Admins in No Particular Order
	P vs NP
	Circuits Like You've Never Seen Before
	Matchings in Parallel

