
Adapted from CS498TC [Eri22]

Convex Hulls

Sam Ruggerio



Outline

Computational Geometry

Convex Hulls

Optimal Convex Hulls



Section 1

Computational Geometry



What is Computational Geometry

• Algorithms and data structures with discrete geometric objects!

• Working with points, lines, polygons, planes, polytopes, etc.

• Low dimensional computational geometry has applications in
graphics, motion planning, modeling, mesh processing, etc.

• High dimensional CG is the basis of many ML algorithms.

• (The part of theory with cool pictures)



Assumptions

• We will often deal with items in real space (Rd)

• This means having to do math with real numbers (including roots if
we ever want to find distances)

• So our model of computation is the Real RAM:

▶ +,−, /,×,
√
x, x = 0?, x > 0? are all O(1) time between real numbers

▶ Each number takes O(1) space (no bit complexity)

▶ Stored exactly (no floating point)

▶ Notably, transcendental functions are not supported (e.g.
sin, cos, tan).



Assumptions

• Points placed in the plane can construct many other objects (circles,
lines, etc...)

• Often, we want to refer to these structures (relatively) uniquely,
without degenerate cases.

• Our assumption for most problems will be General Position:

▶ No two points are in the same position

▶ No three points are co-linear

▶ No four points are co-circular

• General position is a simplification, you can (almost) always change
an input set to general position, or design an algorithm to handle
special position.



Definitions

• A Polygon Q is an ordered circular sequence of Points P .

• A polygon is simple if it does not self-intersect or have holes

• A polygon is convex if ∀p, q ∈ Q, pq ∈ Q.

• A polygon is closed if there is a segment for each pair of adjacent
points in P .



Polygons



Section 2

Convex Hulls



Convex Hulls

• Problem: Given a point set P , we want to compute the convex hull Q



Convex Hulls

• Intuitively, we want to place a rubber band around all the points.

• Formally, we want to compute the smallest convex polygon
containing all the points.

• We can describe an algorithm which just wraps the polygon.



Jarvis March

Jarvis March algorithm computes a convex hull via the following:

• Find the leftmost point ℓ, set as current point.

• Repeat until we return to ℓ:

▶ Compare slope of each point relative to current point

▶ Pick point with least slope, add to hull and set as current point.

• We could go clockwise and pick greatest slope, by convention
polygons are given in counter-clockwise order.



Jarvis March



Jarvis March

Runtime?

• O(n) to find leftmost point

• O(n) slopes to compare

• Repeat for each point on the hull, h, O(h) times.

• O(nh) =⇒ O(n2) in the worst case.

Jarvis March is output sensitive. It does better when the output structure
is small.



Doing Better

• Jarvis March is the slightly-clever version of a brute force solution.

• But convex hulls are nice structures! Surely we can exploit some
property

• We might be able to provide a greedy solution based off of local
convexity

• If a 2D simple polygon is locally convex everywhere, it must be
convex.

• But how do we test convexity?



Orientation

• We have a circular sequence of points, which means the ordering of
points can be viewed as clockwise or counter-clockwise

• We determine orientation based off of the slope between one point
and the rest.



Orientation Test

• Assume p1 is the leftmost point of p1, p2, p3, then:

▶ If the slope p1p2 is greater than p1p3, it’s clockwise

▶ Otherwise, it’s counterclockwise

▶ (If it’s equal, its flat, which shouldn’t happen under general position)

• To simplify, we’re doing the following test:

y2 − y1
x2 − x1

>
y3 − y1
x3 − x1



It’s just math!

Following through:

y2 − y1
x2 − x1

>
y3 − y1
x3 − x1

y2x3 − y2x1 − y1x3 + y1x1 > y3x2 − y1x2 − y3x1 + y1x1

y1x2 + y3x1 − y3x2 + y2x3 − y2x1 − y1x3 > 0



It’s just math!

Following through:

y2 − y1
x2 − x1

>
y3 − y1
x3 − x1

y2x3 − y2x1 − y1x3 + y1x1 > y3x2 − y1x2 − y3x1 + y1x1

y1x2 + y3x1 − y3x2 + y2x3 − y2x1 − y1x3 > 0∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ > 0

Recall that the determinant of 3 points in that form gives you 2 times the
area of a triangle. Positive if it’s ccw, negative if cw.



Orientation Test

• Take the (signed) determinant of 3 points

• If greater than 0, points are oriented counter clockwise

• If less than 0, points are oriented clockwise

• If equal to 0, points are flat.

• Runtime? O(1)



Graham’s Scan
• First, find the leftmost point ℓ

• Then, create a polygon Q, sorted around ℓ



Graham’s Scan

• Then, perform a repair on the polygon:

▶ Mark the first 3 vertices

▶ If they are convex, move all marks forward one vertex

▶ If not, delete the middle mark, and mark the previous vertex

▶ Repeat.



Graham’s Scan



Graham’s Scan



Graham’s Scan



Graham’s Scan

Runtime?

• Find leftmost point: O(n)

• Sort points around ℓ to construct a polygon: O(n log n)

• 3 mark repair?

▶ You could delete at most O(n) points

▶ Each deletion moves the marks back one spot

▶ Otherwise, the scan moves forward one spot =⇒ O(n) time.

• O(n log n) total runtime (dominated by sort)



Section 3

Optimal Convex Hulls



Doing Even Better

• We have an output sensitive but slow algorithm in O(nh)

• We have a fast, sorting-bound algorithm in O(n log n)

• Can we get a fast output sensitive algorithm?



Chan’s Algorithm

• In 1996, Timothy Chan (UIUC) came up with an output-sensitive
optimal 2D convex hull algorithm

• We’ll use both Jarvis March and Graham’s Scan within our process.

• The high level idea is to construct a cluster of small convex hulls and
merge them



Shattering the Hulls

• Let h be a number we’ll determine later.

• Break our input set P into O(n/h) subsets of size O(h).

• Compute the convex hull of each subset using Graham’s Scan:

▶ O(n/h) subsets, each of size O(h), thus taking h log h time, in total
n log h time.



Candidate Points

• We need to pick final output vertices

• In each hull, we need a candidate point, we pick the lowest tangent
point relative to our current output vertex.

• We’ll find this candidate point via binary search on the hull.



Binary Search on Hulls

• We want to find the lower tangent of a hull H from some start point ℓ

• Once the orientation changes from cw, ccw, we found our point.



Putting It Together

• We can now select candidate points from our sub-hulls and create a
global convex hull:



Runtime

• For each output vertex, in total h times:

▶ We find our next candidate point via binary search in each subset

▶ O(n/h)×O(log h)

▶ Total: O(n log h)

• Combined with our Graham’s scan, we get a final runtime of
O(n log h)

• How do we determine the number of output points ahead of time??



Exponential Search

• Search h via exponential search, h = 3, 9, 81, . . . , 32
k
= hk

• If you don’t output a hull with the number of vertices guessed, you
try again!

• O(n log h1 + n log h2 + n log h3 + · · ·n log h2)

▶ This exponential doubling will eventually exceed h, but no more than
h2

• O(n log 3 + 2n log 3 + . . . 2kn log 3) ≤ O(n log h2) =⇒ O(n log h)



Other things to think about!

• Convex Hulls in 3D? in n-D?

• Triangulating polygons?

• Test if a point is inside a non-simple polygon?

• Linear Programming from a CG perspective

• Shortest Paths in 2D space, or in planar graphs?



Questions?



Bibliography I

Jeff Erickson.

498tc spring 2022.

https://jeffe.cs.illinois.edu/teaching/compgeom/, 2022.

Accessed: 03-04-2024.

https://jeffe.cs.illinois.edu/teaching/compgeom/

	Computational Geometry
	Convex Hulls
	Optimal Convex Hulls

