Adapted from CS498TC [Eri22]
Convex Hulls

Sam Ruggerio



Outline

Computational Geometry

Convex Hulls

Optimal Convex Hulls



Section 1

Computational Geometry



What is Computational Geometry

Algorithms and data structures with discrete geometric objects!

Working with points, lines, polygons, planes, polytopes, etc.

Low dimensional computational geometry has applications in
graphics, motion planning, modeling, mesh processing, etc.

High dimensional CG is the basis of many ML algorithms.

(The part of theory with cool pictures)



Assumptions

* We will often deal with items in real space (R%)

® This means having to do math with real numbers (including roots if
we ever want to find distances)

® So our model of computation is the Real RAM:
>+, — /, X, /x,x =072 > 07 are all O(1) time between real numbers
> Each number takes O(1) space (no bit complexity)
> Stored exactly (no floating point)

> Notably, transcendental functions are not supported (e.g.
sin, cos, tan).



Assumptions

¢ Points placed in the plane can construct many other objects (circles,
lines, etc...)

¢ Often, we want to refer to these structures (relatively) uniquely,
without degenerate cases.

® Qur assumption for most problems will be General Position:
» No two points are in the same position
» No three points are co-linear

» No four points are co-circular

® General position is a simplification, you can (almost) always change
an input set to general position, or design an algorithm to handle
special position.



Definitions

A Polygon @ is an ordered circular sequence of Points P.

A polygon is simple if it does not self-intersect or have holes

A polygon is convez if Vp,q € Q,pq € Q.

A polygon is closed if there is a segment for each pair of adjacent
points in P.



Polygons




Section 2

Convex Hulls



Convex Hulls

® Problem: Given a point set P, we want to compute the conver hull Q)




Convex Hulls

¢ Intuitively, we want to place a rubber band around all the points.

¢ Formally, we want to compute the smallest convex polygon
containing all the points.

® We can describe an algorithm which just wraps the polygon.



Jarvis March

Jarvis March algorithm computes a convex hull via the following:
¢ Find the leftmost point ¢, set as current point.
® Repeat until we return to £:
» Compare slope of each point relative to current point
» Pick point with least slope, add to hull and set as current point.

® We could go clockwise and pick greatest slope, by convention
polygons are given in counter-clockwise order.



Jarvis March




Jarvis March

Runtime?
® O(n) to find leftmost point
® O(n) slopes to compare
® Repeat for each point on the hull, A, O(h) times.
* O(nh) = O(n?) in the worst case.

Jarvis March is output sensitive. It does better when the output structure
is small.

2



Doing Better

e Jarvis March is the slightly-clever version of a brute force solution.

® But convex hulls are nice structures! Surely we can exploit some
property

® We might be able to provide a greedy solution based off of local
convexity

e [f a 2D simple polygon is locally convex everywhere, it must be
convex.

® But how do we test convexity?



Orientation

® We have a circular sequence of points, which means the ordering of
points can be viewed as clockwise or counter-clockwise

JANJ/AN

® We determine orientation based off of the slope between one point
and the rest.

2



Orientation Test

® Assume p; is the leftmost point of py, po, p3, then:

> If the slope p1ps is greater than pips, it’s clockwise

» Otherwise, it’s counterclockwise

> (If it’s equal, its flat, which shouldn’t happen under general position)
® To simplify, we’re doing the following test:

Y2 — Y1 > Ys — Y1
T2 — I xr3 — 1




It’s just math!

Following through:
VoYL Ys
Tro — 1 r3 — I
Y23 — Yo — Y13 + Y121 > Y3T2 — Y12 — Y3T1 + Y121
Y172 + Y31 — Y3x2 + Yoxrs — yor1 — y1w3 > 0




It’s just math!

Following through:
Y2 — U1 > Ys —
ro — I Ir3 — T1
Y23 — Yol — Y13 + Y121 > Y3T2 — Y12 — Ys3x1 + Y121
Y172 + Y3x1 — Ysx2 + Yoxrs — yor1 — y1w3 > 0

1 =1 1
1 x9 92| >0
1 z3 w3

Recall that the determinant of 3 points in that form gives you 2 times the
area of a triangle. Positive if it’s ccw, negative if cw.



Orientation Test

Take the (signed) determinant of 3 points

If greater than 0, points are oriented counter clockwise

If less than 0, points are oriented clockwise

If equal to 0, points are flat.
Runtime? O(1)



Graham’s Scan
e First, find the leftmost point ¢

® Then, create a polygon @, sorted around ¢




Graham’s Scan

® Then, perform a repair on the polygon:
» Mark the first 3 vertices
» If they are convex, move all marks forward one vertex
» If not, delete the middle mark, and mark the previous vertex

> Repeat.



Graham’s Scan



Graham’s Scan



Graham’s Scan



Graham’s Scan

Runtime?

Find leftmost point: O(n)

Sort points around ¢ to construct a polygon: O(nlogn)
¢ 3 mark repair?

> You could delete at most O(n) points

» Each deletion moves the marks back one spot

> Otherwise, the scan moves forward one spot = O(n) time.

O(nlogn) total runtime (dominated by sort)



Section 3

Optimal Convex Hulls



Doing Even Better

® We have an output sensitive but slow algorithm in O(nh)
e We have a fast, sorting-bound algorithm in O(nlogn)

e Can we get a fast output sensitive algorithm?



Chan’s Algorithm

® In 1996, Timothy Chan (UIUC) came up with an output-sensitive
optimal 2D convex hull algorithm

e We’ll use both Jarvis March and Graham’s Scan within our process.

® The high level idea is to construct a cluster of small convex hulls and
merge them

2



Shattering the Hulls

® Let h be a number we’ll determine later.
® Break our input set P into O(n/h) subsets of size O(h).
e Compute the convex hull of each subset using Graham’s Scan:

> O(n/h) subsets, each of size O(h), thus taking hlog h time, in total
nlogh time.



Candidate Points

® We need to pick final output vertices

¢ In each hull, we need a candidate point, we pick the lowest tangent
point relative to our current output vertex.

e We'll find this candidate point via binary search on the hull.



Binary Search on Hulls

® We want to find the lower tangent of a hull H from some start point ¢

® Once the orientation changes from cw, ccw, we found our point. Z



Putting It Together

® We can now select candidate points from our sub-hulls and create a
global convex hull:




Runtime

® For each output vertex, in total h times:
> We find our next candidate point via binary search in each subset
> O(n/h) x O(logh)
> Total: O(nlogh)

¢ Combined with our Graham’s scan, we get a final runtime of

O(nlogh)

® How do we determine the number of output points ahead of time??

2



Exponential Search

Search h via exponential search, h = 3,9, 81, ... ,32’C = hg

If you don’t output a hull with the number of vertices guessed, you
try again!

O(nlog hy + nlog hy + nloghz + - - - nlog h?)

» This exponential doubling will eventually exceed h, but no more than
h2

O(nlog3 +2nlog3 +...2Fnlog3) < O(nlogh?) = O(nlogh)

2



Other things to think about!

Convex Hulls in 3D? in n-D?

¢ Triangulating polygons?

Test if a point is inside a non-simple polygon?

¢ Linear Programming from a CG perspective

Shortest Paths in 2D space, or in planar graphs?



Questions?



Bibliography I

Jeff Erickson.

498tc spring 2022.
https://jeffe.cs.illinois.edu/teaching/compgeom/, 2022.

Accessed: 03-04-2024.


https://jeffe.cs.illinois.edu/teaching/compgeom/

	Computational Geometry
	Convex Hulls
	Optimal Convex Hulls

