Adapted from CS498TC [Eri22]
 Convex Hulls

Sam Ruggerio

Outline

Computational Geometry

Convex Hulls

Optimal Convex Hulls

Section 1

Computational Geometry

What is Computational Geometry

- Algorithms and data structures with discrete geometric objects!
- Working with points, lines, polygons, planes, polytopes, etc.
- Low dimensional computational geometry has applications in graphics, motion planning, modeling, mesh processing, etc.
- High dimensional CG is the basis of many ML algorithms.
- (The part of theory with cool pictures)

Assumptions

- We will often deal with items in real space $\left(\mathbb{R}^{d}\right)$
- This means having to do math with real numbers (including roots if we ever want to find distances)
- So our model of computation is the Real RAM:
- $+,-, /, \times, \sqrt{x}, x=0$?, $x>0$? are all $O(1)$ time between real numbers
- Each number takes $O(1)$ space (no bit complexity)
- Stored exactly (no floating point)
- Notably, transcendental functions are not supported (e.g. sin, $\cos , t a n)$.

Assumptions

- Points placed in the plane can construct many other objects (circles, lines, etc...)
- Often, we want to refer to these structures (relatively) uniquely, without degenerate cases.
- Our assumption for most problems will be General Position:
- No two points are in the same position
- No three points are co-linear
- No four points are co-circular
- General position is a simplification, you can (almost) always change an input set to general position, or design an algorithm to handle special position.

Definitions

- A Polygon Q is an ordered circular sequence of Points P.
- A polygon is simple if it does not self-intersect or have holes
- A polygon is convex if $\forall p, q \in Q, \overline{p q} \in Q$.
- A polygon is closed if there is a segment for each pair of adjacent points in P.

Polygons

Section 2

Convex Hulls

Convex Hulls

- Problem: Given a point set P, we want to compute the convex hull Q

Convex Hulls

- Intuitively, we want to place a rubber band around all the points.
- Formally, we want to compute the smallest convex polygon containing all the points.
- We can describe an algorithm which just wraps the polygon.

Jarvis March

Jarvis March algorithm computes a convex hull via the following:

- Find the leftmost point ℓ, set as current point.
- Repeat until we return to ℓ :
- Compare slope of each point relative to current point
- Pick point with least slope, add to hull and set as current point.
- We could go clockwise and pick greatest slope, by convention polygons are given in counter-clockwise order.

Jarvis March

Jarvis March

Runtime?

- $O(n)$ to find leftmost point
- $O(n)$ slopes to compare
- Repeat for each point on the hull, $h, O(h)$ times.
- $O(n h) \Longrightarrow O\left(n^{2}\right)$ in the worst case.

Jarvis March is output sensitive. It does better when the output structure is small.

Doing Better

- Jarvis March is the slightly-clever version of a brute force solution.
- But convex hulls are nice structures! Surely we can exploit some property
- We might be able to provide a greedy solution based off of local convexity
- If a 2D simple polygon is locally convex everywhere, it must be convex.
- But how do we test convexity?

Orientation

- We have a circular sequence of points, which means the ordering of points can be viewed as clockwise or counter-clockwise

- We determine orientation based off of the slope between one point and the rest.

Orientation Test

- Assume p_{1} is the leftmost point of p_{1}, p_{2}, p_{3}, then:
- If the slope $\overline{p_{1} p_{2}}$ is greater than $\overline{p_{1} p_{3}}$, it's clockwise
- Otherwise, it's counterclockwise
- (If it's equal, its flat, which shouldn't happen under general position)
- To simplify, we're doing the following test:

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}>\frac{y_{3}-y_{1}}{x_{3}-x_{1}}
$$

It's just math!

Following through:

$$
\begin{aligned}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & >\frac{y_{3}-y_{1}}{x_{3}-x_{1}} \\
y_{2} x_{3}-y_{2} x_{1}-y_{1} x_{3}+y_{1} x_{1} & >y_{3} x_{2}-y_{1} x_{2}-y_{3} x_{1}+y_{1} x_{1} \\
y_{1} x_{2}+y_{3} x_{1}-y_{3} x_{2}+y_{2} x_{3}-y_{2} x_{1}-y_{1} x_{3} & >0
\end{aligned}
$$

It's just math!

Following through:

$$
\begin{aligned}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & >\frac{y_{3}-y_{1}}{x_{3}-x_{1}} \\
y_{2} x_{3}-y_{2} x_{1}-y_{1} x_{3}+y_{1} x_{1} & >y_{3} x_{2}-y_{1} x_{2}-y_{3} x_{1}+y_{1} x_{1} \\
y_{1} x_{2}+y_{3} x_{1}-y_{3} x_{2}+y_{2} x_{3}-y_{2} x_{1}-y_{1} x_{3} & >0 \\
\left|\begin{array}{ccc}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right| & >0
\end{aligned}
$$

Recall that the determinant of 3 points in that form gives you 2 times the area of a triangle. Positive if it's ccw, negative if cw.

Orientation Test

- Take the (signed) determinant of 3 points
- If greater than 0 , points are oriented counter clockwise
- If less than 0 , points are oriented clockwise
- If equal to 0 , points are flat.
- Runtime? $O(1)$

Graham's Scan

- First, find the leftmost point ℓ
- Then, create a polygon Q, sorted around ℓ

Graham's Scan

- Then, perform a repair on the polygon:
- Mark the first 3 vertices
- If they are convex, move all marks forward one vertex
- If not, delete the middle mark, and mark the previous vertex
- Repeat.

Graham's Scan

Graham's Scan

Graham's Scan

Σ

Graham's Scan

Runtime?

- Find leftmost point: $O(n)$
- Sort points around ℓ to construct a polygon: $O(n \log n)$
- 3 mark repair?
- You could delete at most $O(n)$ points
- Each deletion moves the marks back one spot
- Otherwise, the scan moves forward one spot $\Longrightarrow O(n)$ time.
- $O(n \log n)$ total runtime (dominated by sort)

Section 3

Optimal Convex Hulls

Doing Even Better

- We have an output sensitive but slow algorithm in $O(n h)$
- We have a fast, sorting-bound algorithm in $O(n \log n)$
- Can we get a fast output sensitive algorithm?

Chan's Algorithm

- In 1996, Timothy Chan (UIUC) came up with an output-sensitive optimal 2D convex hull algorithm
- We'll use both Jarvis March and Graham's Scan within our process.
- The high level idea is to construct a cluster of small convex hulls and merge them

Shattering the Hulls

- Let h be a number we'll determine later.
- Break our input set P into $O(n / h)$ subsets of size $O(h)$.
- Compute the convex hull of each subset using Graham's Scan:
- $O(n / h)$ subsets, each of size $O(h)$, thus taking $h \log h$ time, in total $n \log h$ time.

Candidate Points

- We need to pick final output vertices
- In each hull, we need a candidate point, we pick the lowest tangent point relative to our current output vertex.
- We'll find this candidate point via binary search on the hull.

Binary Search on Hulls

- We want to find the lower tangent of a hull H from some start point ℓ

- Once the orientation changes from cw, ccw, we found our point.

Putting It Together

- We can now select candidate points from our sub-hulls and create a global convex hull:

Runtime

- For each output vertex, in total h times:
- We find our next candidate point via binary search in each subset
- $O(n / h) \times O(\log h)$
- Total: $O(n \log h)$
- Combined with our Graham's scan, we get a final runtime of $O(n \log h)$
- How do we determine the number of output points ahead of time??

Exponential Search

- Search h via exponential search, $h=3,9,81, \ldots, 3^{2^{k}}=h_{k}$
- If you don't output a hull with the number of vertices guessed, you try again!
- $O\left(n \log h_{1}+n \log h_{2}+n \log h_{3}+\cdots n \log h^{2}\right)$
- This exponential doubling will eventually exceed h, but no more than h^{2}
- $O\left(n \log 3+2 n \log 3+\ldots 2^{k} n \log 3\right) \leq O\left(n \log h^{2}\right) \Longrightarrow O(n \log h)$

Other things to think about!

- Convex Hulls in 3D? in n-D?
- Triangulating polygons?
- Test if a point is inside a non-simple polygon?
- Linear Programming from a CG perspective
- Shortest Paths in 2D space, or in planar graphs?

Questions?

Bibliography I

\square Jeff Erickson

498tc spring 2022.
https://jeffe.cs.illinois.edu/teaching/compgeom/, 2022.

Accessed: 03-04-2024.

