Cuckoo Hashing

Alex Broihier

Outline

Hashing Functions and Families
Hash Tables and Hashing Strategies

Cuckoo Hashing

Conclusion

Section 1

Hashing Functions and Families

Hash Functions

- h is a hash function if it has the form $h: U \rightarrow\{0,1, \ldots, n-1\}$ for some set U and some constant n
- Example: if U is the integers, $h(x)=x \bmod n$ is a hash function
- Often used to assign an element an index in an array of size n
- This alone is not useful; hash functions are typically used to take an arbitrarily input and give back a seemingly random output

Hash Families

- A hash family is a set of hash functions, $\left\{h_{1}, h_{2}, \ldots\right\}$
- They provide a source of randomness: you can randomly sample a hash function to use from a hash family
- This will allows us to analyze hash families probabilistically

Universal Hash Families

- A universal hash family is a hash family with the property

$$
\operatorname{Pr}_{h \in H}[h(x)=h(y)] \leq \frac{1}{n} \quad x \neq y
$$

(c, k) Universal Hash Families

- We can generalize universal hash families (and get stronger guarantees while we are at it)
- A hash family is (c, k) universal if for all $x_{1}, x_{2}, \ldots, x_{k} \in U$ and for all $y_{1}, y_{2}, \ldots, y_{k} \in\{0,1, \ldots, n-1\}$

$$
\operatorname{Pr}_{h \in H}\left[h\left(x_{1}\right)=y_{1}, h\left(x_{2}\right)=y_{2}, \ldots, h\left(x_{k}\right)=y_{k}\right] \leq \frac{c}{n^{k}}
$$

- The previously discussed "standard" universal hash family is $(1,2)$ universal

Aside: Amortized vs Expected Cost

- Randomness is present in our hashing algorithms, so we need the language to properly describe this. Amortized and expected runtime are different things.
- Amortized runtime is guaranteed to "average out." We analyze the runtime across numerous runs (even though a worst case individual run could be expensive)
- Example: push back for a dynamically sized array takes amortized $O(1)$ time
- Expected runtime is what will probably happen. The absolute worst case can be very bad (but will very rarely occur)
- Example: quicksort with randomized pivots takes expected $O(n \log n)$ time

Section 2

Hash Tables and Hashing Strategies

Hash Tables

- A hash table uses hashing to implement a "dictionary" data structure, which uses keys to access values
- Fundamental Operations:
- Add key / value pair
- Lookup the value for a given key
- Remove key / value pair

Hash Table Implementation

- Use some hash function h (may be randomly sampled from some hashing family)
- Store an array of size r to hold n elements; we keep $\frac{n}{r} \leq C$, where C is some constant and $\frac{n}{r}$ is the "load factor"
- For each key / value pair, store it at index $h($ key $) \bmod n$
- Hidden Operations:
- Rehash (resample hash function h)
- Resize (grow or shrink the internal array)
- What happens if two key / value pairs are assigned to the same index in our array?

Resolving Hash Table Collisions

- We say a collision happened when more than one key / value pair is assigned to the same index
- Separate Chaining
- Store a linked list (or some other data structure) of key / value pairs at each index

Resolving Hash Table Collisions (Continued)

- We say a collision happened when more than one key / value pair is assigned to the same index
- (Linear) Probing
- Upon collision, keep searching until you find the first unoccupied entry in the array

Separate Chaining Analysis

- Insert is $O(1)$ time
- Lookup and Delete are expected $O(1)$ time
- Lookup and Delete depend on how many elements are in the linked list at index $h($ key $) \bmod n$
- If we treat h as random (use a (c, k) universal hash family), we would expect $\frac{n}{r}$ elements at each index
- We bound our load factor above by a constant, so we can treat it as that upper bound
- Thus the linked list at index $h($ key $)$ mod n has expected $O(1)$ elements, so lookup and delete are expected $O(1)$ time

Linear Probing Analysis

- Insert, Lookup, and Delete are expected $O(1)$ time
- These all depend on the length of the chain starting at index $h($ key $) \bmod n$
- Can show that the expected chain length is a linear function of $\frac{n}{r}$ (which we bound above)

Section 3

Cuckoo Hashing

Cuckoo Hashing

- What if instead of storing one array, what if we store two arrays of length r ?
- Pick $r \geq(1+\epsilon) n \Longrightarrow \frac{r}{n} \geq 1+\epsilon$
- Each array corresponds to one of two independent hash functions, h_{1} and h_{2}, which are randomly sampled from hash family H

Cuckoo Hashing: Lookup and Delete

- To lookup a key, we use h_{1} to index into the first array; if we don't find the key there, we use h_{2} to index into the second array
- To delete a key, we follow a similar process
- Importantly, we search at most two locations (one entry per array), so lookup and delete take worst case $O(1)$ time
- But how does insert work?

Cuckoo Hashing: Insert

- Hash the key using h_{1} and check to see if the corresponding spot in the array is available
- If the location is occupied:
- Put our new key / value in the location, take the old key / value pair
- Hash the old key with h_{2} to find its spot in the other array
- If the spot is in the other array is occupied, repeat this process (loop)

Cuckoo Hashing: Insert (Continued)

- Problem: Insert could infinite loop
- Solution: If we loop more than $M a x _L o o p=3 \log _{1+\epsilon} r$ times, rehash the entire table

Cuckoo Hashing: Insert (Continued)

- Our present understanding: cuckoo hashing is good if we can afford costly inserts and want $O(1)$ time lookup and delete
- Claim: cuckoo hashing insert is expected amortized $O(1)$ runtime

Insert Analysis

- Let h_{1} and h_{2} be from a universal hash family H that is at least as strong as (1, Max_ Loop) universal
- Research has shown that with probability $1-O\left(\frac{1}{n^{2}}\right)$, we can treat h_{1} and h_{2} as independent random functions
- Let $x_{1}, x_{2}, \ldots, x_{k}$ be the sequence of keys we encounter during insert
- We call $x_{1}, x_{2}, \ldots, x_{k}$ nestless keys

Insert Analysis (Continued)

- Case 1: $x_{1}, x_{2}, \ldots, x_{k}$ are all distinct (and thus we have a finite sequence)

Insert Analysis (Continued)

- Case 2: $x_{1}, x_{2}, \ldots, x_{k}$ has some repeated value $x_{i}=x_{j}, i \neq j$, but we have a finite sequence

Insert Analysis (Continued)

- Case 3: $x_{1}, x_{2}, \ldots, x_{m}, \ldots$ has some repeated values and forms an infinite sequence (so we need to rehash the table)

Insert Analysis (Continued)

- With probability $1-O\left(\frac{1}{n^{2}}\right)$ we treat h_{1} and h_{2} as random functions and continue on with the analysis
- With probability $O\left(\frac{1}{n^{2}}\right)$ the worst case might as well happen and we rehash

Insert Analysis: Lemma

Lemma
For a sequence of nestless keys that has not formed a closed loop, x_{1}, \ldots, x_{k}, there exists a consecutive subsequence $x_{q}, \ldots, x_{q+\ell-1}$ of distinct keys where $x_{1}=x_{q}$ and $\ell \geq \frac{k}{3}$.
"Proof" by Picture
Worst case:

Insert Analysis: Cases 1 and 2 Bounds

- By the previous lemma, there exists a sequence of at least $\frac{k}{3}$ distinct nestless keys, b_{1}, \ldots, b_{v}
- Then $h_{1}\left(b_{1}\right)=h_{1}\left(b_{2}\right), h_{2}\left(b_{2}\right)=h_{2}\left(b_{3}\right), h_{1}\left(b_{3}\right)=h_{1}\left(b_{4}\right), \ldots$ (or same thing, but with h_{1} and h_{2} swapped)
- Less than n^{v-1} ways to have v distinct keys $\left(v-1\right.$ since we treat x_{1} as fixed)
- Since we are treating h_{1} and h_{2} are random, each way to select the distinct keys has probability $r^{-(v-1)}$

Insert Analysis: Cases 1 and 2 Bounds (Continued)

- Recall that $\frac{r}{n} \geq 1+\epsilon$
- Probability for this case is $2 n^{v-1} r^{-v+1}=2\left(\frac{r}{n}\right)^{-v+1} \leq 2(1+\epsilon)^{-\frac{k}{3}+1}$
- Thus the probability that we get case 1 or 2 and see k keys is at most $2(1+\epsilon)^{-\frac{k}{3}+1}$

Insert Analysis: Case 3 Bounds

- For a sequence of k nestless keys with a closed loop, let v be the number of distinct keys
- Once again, we have less than n^{v-1} way to chose the remaining distinct keys and r^{v-1} ways to put them in the table
- There are at most v^{3} ways to pick the start and end of the first loop and the start of the second loop
- Each arrangement of nestless keys occurs with probability $r^{-2 v}\left(r^{-v}\right.$ for each hash function)

Insert Analysis: Case 3 Bounds (Continued)

- Altogether, the probability is bounded by

$$
\begin{aligned}
\Sigma_{v=3}^{\ell} v^{3} n^{v-1} r^{v-1} r^{-2 v} & =\frac{1}{n r} \Sigma_{v=3}^{\ell} v^{3} n^{v} r^{v} r^{-2 v} \\
& \leq \frac{1}{n r} \Sigma_{v=3}^{\infty} v^{3}\left(\frac{r}{n}\right)^{-v} \\
& \leq \frac{1}{n r} \Sigma_{v=3}^{\infty} v^{3}(1+\epsilon)^{-v} \\
& =\frac{1}{n O(n)} O(1) \\
& =O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

Insert Analysis (Continued)

- We can now calculate an upper bound on the expected value for the number of nestless keys:
- 1: there is always at least one nestless key
 $2 *$ Max_ Loop nestless keys

- All together we have an expected number of nestless keys of $1+\Sigma_{k=2}^{2 * \text { Max }_{-}{ }^{\text {Loop }}\left(2(1+\epsilon)^{-\frac{k}{3}+1}+O\left(\frac{1}{n^{2}}\right)\right), ~(1)}$

Insert Analysis (Continued)

$$
\begin{aligned}
1+\Sigma_{k=2}^{2 * M a x_{-} L o o p} & \left(2(1+\epsilon)^{-\frac{k}{3}+1}+O\left(\frac{1}{n^{2}}\right)\right) \\
& \leq O(1)+O\left(\frac{M a x_{-} L o o p}{n^{2}}\right)+\sum_{k=2}^{\infty} 2(1+\epsilon)^{-\frac{k}{3}} \\
& \leq O(1)+O(1)+O(1)=O(1)
\end{aligned}
$$

- Thus we expect to encounter $O(1)$ nestless keys, so ignoring when we need to rehash or resize, we have an expected $O(1)$ insert runtime

Cuckoo Hashing: Rehash Analysis

- We rehash when we have a sequence of $2 * M A X_{-} L O O P$ keys
- This can occur if:
- h_{1} and h_{2} are not random with $O\left(\frac{1}{n^{2}}\right)$ probability
- There is a closed loop with $O\left(\frac{1}{n^{2}}\right)$ probability
- We have a $k=2 * M A X _L O O P$ sequence of keys that do not form a closed loop with probability

$$
\begin{aligned}
\leq 2(1+\epsilon)^{-\frac{k}{3}+1} & =2(1+\epsilon)^{-\frac{2}{3} * M A X_{-} L O O P+1} \\
& =2(1+\epsilon)^{-2 \log _{1+\epsilon} r+1} \\
& =O\left(\frac{2}{r^{2}}\right) \\
& =O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

Cuckoo Hashing: Rehash Analysis (Continued)

- Each insert has $O\left(\frac{1}{n^{2}}\right)+O\left(\frac{1}{n^{2}}\right)+O\left(\frac{1}{n^{2}}\right)=O\left(\frac{1}{n^{2}}\right)$ probability of causing a rehash
- We need to reinsert n items with expected $O(1)$ time per item, so this takes $O(n)$ time
- This holds unless we need to rehash again; n items have $O\left(\frac{1}{n^{2}}\right)$ probability to cause a rehash, so we have $O\left(\frac{1}{n}\right)$ probability of rehashing
- We have a decreasing geometric series $\Longrightarrow O(n)$ expected time to rehash
- With an expected $O(1)$ time insert about $1-O\left(\frac{1}{n^{2}}\right)$ of the time and an expected $O(n)$ time insert the remaining $O\left(\frac{1}{n^{2}}\right)$ of the time, we get an expected amortized $O(1)$ insert runtime

Section 4
Conclusion

Recap

- We saw looked at hash functions and families, in particular (c, k) universal hash families
- We looked at hash tables and well known hashing strategies
- We examined a new hashing strategy, Cuckoo Hashing, that has guaranteed $O(1)$ time lookup and delete, along with expected amortized $O(1)$ time insert

Questions?

Probability theory is nothing but common sense reduced to calculation.

- PIERRE-SIMON LAPLACE (1814)

Bibliography I

Charles Chen.
An overview of cuckoo hashing.
Accessed: 03-14-2024.Erik Demaine and Oren Weimann.

Mit 6.851: Advanced data structures (spring 2007) lecture 11.
Accessed: 03-30-2024.Jeff Erickson.
Algorithms, June 2019.
Accessed: 03-14-2024.

