Cuckoo Hashing

Alex Broihier

Hashing Functions and Families

Hash Tables and Hashing Strategies

Cuckoo Hashing

Conclusion

Section 1

Hashing Functions and Families

Hash Functions

- h is a hash function if it has the form $h: U \to \{0, 1, \dots, n-1\}$ for some set U and some constant n
- Example: if U is the integers, $h(x) = x \mod n$ is a hash function
- Often used to assign an element an index in an array of size n
- This alone is not useful; hash functions are typically used to take an arbitrarily input and give back a seemingly random output

Hash Families

- A hash family is a set of hash functions, $\{h_1, h_2, \ldots\}$
- They provide a source of randomness: you can randomly sample a hash function to use from a hash family
- This will allows us to analyze hash families probabilistically

Universal Hash Families

• A universal hash family is a hash family with the property

$$Pr_{h\in H}[h(x) = h(y)] \le \frac{1}{n}$$
 $x \ne y$

(c,k) Universal Hash Families

- We can generalize universal hash families (and get stronger guarantees while we are at it)
- A hash family is (c, k) universal if for all $x_1, x_2, \ldots, x_k \in U$ and for all $y_1, y_2, \ldots, y_k \in \{0, 1, \ldots, n-1\}$

$$Pr_{h\in H}[h(x_1) = y_1, h(x_2) = y_2, \dots, h(x_k) = y_k] \le \frac{c}{n^k}$$

• The previously discussed "standard" universal hash family is (1,2) universal

Aside: Amortized vs Expected Cost

- Randomness is present in our hashing algorithms, so we need the language to properly describe this. Amortized and expected runtime are different things.
- Amortized runtime is guaranteed to "average out." We analyze the runtime across numerous runs (even though a worst case individual run could be expensive)
 - Example: push back for a dynamically sized array takes amortized O(1) time
- Expected runtime is what will probably happen. The absolute worst case can be very bad (but will very rarely occur)
 - \blacktriangleright Example: quicks ort with randomized pivots takes expected $O(n {\rm log} n)$ time

Section 2

Hash Tables and Hashing Strategies

Hash Tables

- A hash table uses hashing to implement a "dictionary" data structure, which uses keys to access values
- Fundamental Operations:
 - ▶ Add key / value pair
 - ▶ Lookup the value for a given key
 - Remove key / value pair

Hash Table Implementation

- Use some hash function h (may be randomly sampled from some hashing family)
- Store an array of size r to hold n elements; we keep $\frac{n}{r} \leq C$, where C is some constant and $\frac{n}{r}$ is the "load factor"
- For each key / value pair, store it at index $h(\text{key}) \mod n$
- Hidden Operations:
 - Rehash (resample hash function h)
 - Resize (grow or shrink the internal array)
- What happens if two key / value pairs are assigned to the same index in our array?

Resolving Hash Table Collisions

- We say a collision happened when more than one key / value pair is assigned to the same index
- Separate Chaining
 - Store a linked list (or some other data structure) of key / value pairs at each index

Resolving Hash Table Collisions (Continued)

- We say a collision happened when more than one key / value pair is assigned to the same index
- (Linear) Probing
 - Upon collision, keep searching until you find the first unoccupied entry in the array

Separate Chaining Analysis

- Insert is O(1) time
- Lookup and Delete are expected O(1) time
 - Lookup and Delete depend on how many elements are in the linked list at index h(key) mod n
 - ▶ If we treat *h* as random (use a (c, k) universal hash family), we would expect $\frac{n}{r}$ elements at each index
 - We bound our load factor above by a constant, so we can treat it as that upper bound
 - Thus the linked list at index $h(\text{key}) \mod n$ has expected O(1) elements, so lookup and delete are expected O(1) time

Linear Probing Analysis

- Insert, Lookup, and Delete are expected O(1) time
 - \blacktriangleright These all depend on the length of the chain starting at index $h(\mathrm{key}) \bmod n$
 - Can show that the expected chain length is a linear function of $\frac{n}{r}$ (which we bound above)

Section 3

Cuckoo Hashing

Cuckoo Hashing

- What if instead of storing one array, what if we store two arrays of length r?
- Pick $r \ge (1+\epsilon)n \implies \frac{r}{n} \ge 1+\epsilon$
- Each array corresponds to one of two independent hash functions, h_1 and h_2 , which are randomly sampled from hash family H

Cuckoo Hashing: Lookup and Delete

- To lookup a key, we use h_1 to index into the first array; if we don't find the key there, we use h_2 to index into the second array
- To delete a key, we follow a similar process
- Importantly, we search at most two locations (one entry per array), so lookup and delete take worst case O(1) time
- But how does insert work?

Cuckoo Hashing: Insert

- Hash the key using h_1 and check to see if the corresponding spot in the array is available
- If the location is occupied:
 - Put our new key / value in the location, take the old key / value pair
 - Hash the old key with h_2 to find its spot in the other array
 - ▶ If the spot is in the other array is occupied, repeat this process (loop)

Cuckoo Hashing: Insert (Continued)

- Problem: Insert could infinite loop
- Solution: If we loop more than $Max_Loop = 3\log_{1+\epsilon}r$ times, rehash the entire table

Cuckoo Hashing: Insert (Continued)

- Our present understanding: cuckoo hashing is good if we can afford costly inserts and want O(1) time lookup and delete
- Claim: cuckoo hashing insert is expected amortized O(1) runtime

Insert Analysis

- Let h_1 and h_2 be from a universal hash family H that is at least as strong as $(1, Max_Loop)$ universal
 - Research has shown that with probability $1 O(\frac{1}{n^2})$, we can treat h_1 and h_2 as independent random functions
- Let x_1, x_2, \ldots, x_k be the sequence of keys we encounter during insert
 - We call x_1, x_2, \ldots, x_k nestless keys

• Case 1: x_1, x_2, \ldots, x_k are all distinct (and thus we have a finite sequence)

• Case 2: x_1, x_2, \ldots, x_k has some repeated value $x_i = x_j, i \neq j$, but we have a finite sequence

• Case 3: $x_1, x_2, \ldots, x_m, \ldots$ has some repeated values and forms an infinite sequence (so we need to rehash the table)

- With probability $1 O(\frac{1}{n^2})$ we treat h_1 and h_2 as random functions and continue on with the analysis
- With probability $O(\frac{1}{n^2})$ the worst case might as well happen and we rehash

Insert Analysis: Lemma

Lemma

For a sequence of nestless keys that has not formed a closed loop, x_1, \ldots, x_k , there exists a consecutive subsequence $x_q, \ldots, x_{q+\ell-1}$ of distinct keys where $x_1 = x_q$ and $\ell \geq \frac{k}{3}$.

"Proof" by Picture

Worst case:

Insert Analysis: Cases 1 and 2 Bounds

- By the previous lemma, there exists a sequence of at least $\frac{k}{3}$ distinct nestless keys, b_1, \ldots, b_v
- Then $h_1(b_1) = h_1(b_2), h_2(b_2) = h_2(b_3), h_1(b_3) = h_1(b_4), \dots$ (or same thing, but with h_1 and h_2 swapped)
- Less than n^{v-1} ways to have v distinct keys $(v-1 \text{ since we treat } x_1 \text{ as fixed})$
- Since we are treating h_1 and h_2 are random, each way to select the distinct keys has probability $r^{-(v-1)}$

Insert Analysis: Cases 1 and 2 Bounds (Continued)

- Recall that $\frac{r}{n} \ge 1 + \epsilon$
- Probability for this case is $2n^{v-1}r^{-v+1} = 2(\frac{r}{n})^{-v+1} \le 2(1+\epsilon)^{-\frac{k}{3}+1}$
- Thus the probability that we get case 1 or 2 and see k keys is at most $2(1+\epsilon)^{-\frac{k}{3}+1}$

Insert Analysis: Case 3 Bounds

- For a sequence of k nestless keys with a closed loop, let v be the number of distinct keys
- Once again, we have less than n^{v-1} way to chose the remaining distinct keys and r^{v-1} ways to put them in the table
- There are at most v^3 ways to pick the start and end of the first loop and the start of the second loop
- Each arrangement of nestless keys occurs with probability r^{-2v} (r^{-v} for each hash function)

Insert Analysis: Case 3 Bounds (Continued)

• Altogether, the probability is bounded by

$$\begin{split} \Sigma_{v=3}^{\ell} v^3 n^{v-1} r^{v-1} r^{-2v} &= \frac{1}{nr} \Sigma_{v=3}^{\ell} v^3 n^v r^v r^{-2v} \\ &\leq \frac{1}{nr} \Sigma_{v=3}^{\infty} v^3 (\frac{r}{n})^{-v} \\ &\leq \frac{1}{nr} \Sigma_{v=3}^{\infty} v^3 (1+\epsilon)^{-v} \\ &= \frac{1}{nO(n)} O(1) \\ &= O(\frac{1}{n^2}) \end{split}$$

• We can now calculate an upper bound on the expected value for the number of nestless keys:

▶ 1: there is always at least one nestless key

- $\sum_{k=2}^{2*Max_Loop} 2(1+\epsilon)^{-\frac{k}{3}+1}$: case 1 or 2 with between 2 and $2*Max_Loop$ nestless keys
- $\blacktriangleright \sum_{k=2}^{2*Max_Loop} O(\frac{1}{n^2})$: case 3 with $2*Max_Loop$ nestless keys
- All together we have an expected number of nestless keys of $1 + \sum_{k=2}^{2*Max} Loop(2(1+\epsilon)^{-\frac{k}{3}+1} + O(\frac{1}{n^2}))$

$$1 + \sum_{k=2}^{2*Max_Loop} (2(1+\epsilon)^{-\frac{k}{3}+1} + O(\frac{1}{n^2}))$$

$$\leq O(1) + O(\frac{Max_Loop}{n^2}) + \sum_{k=2}^{\infty} 2(1+\epsilon)^{-\frac{k}{3}}$$

$$\leq O(1) + O(1) + O(1) = O(1)$$

• Thus we expect to encounter O(1) nestless keys, so ignoring when we need to rehash or resize, we have an expected O(1) insert runtime

Cuckoo Hashing: Rehash Analysis

- We rehash when we have a sequence of $2 * MAX_LOOP$ keys
- This can occur if:
 - ▶ h_1 and h_2 are not random with $O(\frac{1}{n^2})$ probability
 - ▶ There is a closed loop with $O(\frac{1}{n^2})$ probability
 - We have a $k = 2 * MAX_LOOP$ sequence of keys that do not form a closed loop with probability

$$\leq 2(1+\epsilon)^{-\frac{k}{3}+1} = 2(1+\epsilon)^{-\frac{2}{3}*MAX_LOOP+1} \\ = 2(1+\epsilon)^{-2\log_{1+\epsilon}r+1} \\ = O(\frac{2}{r^2}) \\ = O(\frac{1}{n^2})$$

Cuckoo Hashing: Rehash Analysis (Continued)

- Each insert has $O(\frac{1}{n^2}) + O(\frac{1}{n^2}) + O(\frac{1}{n^2}) = O(\frac{1}{n^2})$ probability of causing a rehash
- We need to reinsert n items with expected O(1) time per item, so this takes O(n) time
- This holds unless we need to rehash again; n items have $O(\frac{1}{n^2})$ probability to cause a rehash, so we have $O(\frac{1}{n})$ probability of rehashing
- We have a decreasing geometric series $\implies O(n)$ expected time to rehash
- With an expected O(1) time insert about $1 O(\frac{1}{n^2})$ of the time and an expected O(n) time insert the remaining $O(\frac{1}{n^2})$ of the time, we get an expected amortized O(1) insert runtime

Section 4

Conclusion

Recap

- We saw looked at hash functions and families, in particular (c, k) universal hash families
- We looked at hash tables and well known hashing strategies
- We examined a new hashing strategy, Cuckoo Hashing, that has guaranteed O(1) time lookup and delete, along with expected amortized O(1) time insert

Questions?

Probability theory is nothing but common sense reduced to calculation.

- PIERRE-SIMON LAPLACE (1814)

Bibliography I

An overview of cuckoo hashing.

Accessed: 03-14-2024.

Mit 6.851: Advanced data structures (spring 2007) lecture 11.

Accessed: 03-30-2024.

Jeff Erickson.

Algorithms, June 2019.

Accessed: 03-14-2024.

