
Cuckoo Hashing

Alex Broihier

Outline

Hashing Functions and Families

Hash Tables and Hashing Strategies

Cuckoo Hashing

Conclusion

Section 1

Hashing Functions and Families

Hash Functions

• h is a hash function if it has the form h : U → {0, 1, . . . , n− 1} for
some set U and some constant n

• Example: if U is the integers, h(x) = x mod n is a hash function

• Often used to assign an element an index in an array of size n

• This alone is not useful; hash functions are typically used to take an
arbitrarily input and give back a seemingly random output

Hash Families

• A hash family is a set of hash functions, {h1, h2, . . .}

• They provide a source of randomness: you can randomly sample a
hash function to use from a hash family

• This will allows us to analyze hash families probabilistically

Universal Hash Families

• A universal hash family is a hash family with the property

Prh∈H [h(x) = h(y)] ≤ 1

n
x ̸= y

(c, k) Universal Hash Families

• We can generalize universal hash families (and get stronger
guarantees while we are at it)

• A hash family is (c, k) universal if for all x1, x2, . . . , xk ∈ U and for
all y1, y2, . . . , yk ∈ {0, 1, . . . , n− 1}

Prh∈H [h(x1) = y1, h(x2) = y2, . . . , h(xk) = yk] ≤
c

nk

• The previously discussed “standard” universal hash family is (1, 2)
universal

Aside: Amortized vs Expected Cost

• Randomness is present in our hashing algorithms, so we need the
language to properly describe this. Amortized and expected runtime
are different things.

• Amortized runtime is guaranteed to “average out.” We analyze the
runtime across numerous runs (even though a worst case individual
run could be expensive)

▶ Example: push back for a dynamically sized array takes amortized
O(1) time

• Expected runtime is what will probably happen. The absolute worst
case can be very bad (but will very rarely occur)

▶ Example: quicksort with randomized pivots takes expected O(nlogn)
time

Section 2

Hash Tables and Hashing Strategies

Hash Tables

• A hash table uses hashing to implement a “dictionary” data structure,
which uses keys to access values

• Fundamental Operations:

▶ Add key / value pair

▶ Lookup the value for a given key

▶ Remove key / value pair

Hash Table Implementation

• Use some hash function h (may be randomly sampled from some
hashing family)

• Store an array of size r to hold n elements; we keep n
r ≤ C, where C

is some constant and n
r is the “load factor”

• For each key / value pair, store it at index h(key) mod n

• Hidden Operations:

▶ Rehash (resample hash function h)

▶ Resize (grow or shrink the internal array)

• What happens if two key / value pairs are assigned to the same index
in our array?

Resolving Hash Table Collisions
• We say a collision happened when more than one key / value pair is

assigned to the same index

• Separate Chaining

▶ Store a linked list (or some other data structure) of key / value pairs
at each index

Resolving Hash Table Collisions (Continued)
• We say a collision happened when more than one key / value pair is

assigned to the same index

• (Linear) Probing

▶ Upon collision, keep searching until you find the first unoccupied
entry in the array

Separate Chaining Analysis

• Insert is O(1) time

• Lookup and Delete are expected O(1) time

▶ Lookup and Delete depend on how many elements are in the linked
list at index h(key) mod n

▶ If we treat h as random (use a (c, k) universal hash family), we would
expect n

r elements at each index

▶ We bound our load factor above by a constant, so we can treat it as
that upper bound

▶ Thus the linked list at index h(key) mod n has expected O(1)
elements, so lookup and delete are expected O(1) time

Linear Probing Analysis

• Insert, Lookup, and Delete are expected O(1) time

▶ These all depend on the length of the chain starting at index
h(key) mod n

▶ Can show that the expected chain length is a linear function of n
r

(which we bound above)

Section 3

Cuckoo Hashing

Cuckoo Hashing

• What if instead of storing one array, what if we store two arrays of
length r?

• Pick r ≥ (1 + ϵ)n =⇒ r
n ≥ 1 + ϵ

• Each array corresponds to one of two independent hash functions, h1
and h2, which are randomly sampled from hash family H

Cuckoo Hashing: Lookup and Delete

• To lookup a key, we use h1 to index into the first array; if we don’t
find the key there, we use h2 to index into the second array

• To delete a key, we follow a similar process

• Importantly, we search at most two locations (one entry per array),
so lookup and delete take worst case O(1) time

• But how does insert work?

Cuckoo Hashing: Insert

• Hash the key using h1 and check to see if the corresponding spot in
the array is available

• If the location is occupied:

▶ Put our new key / value in the location, take the old key / value pair

▶ Hash the old key with h2 to find its spot in the other array

▶ If the spot is in the other array is occupied, repeat this process (loop)

Cuckoo Hashing: Insert (Continued)

• Problem: Insert could infinite loop

• Solution: If we loop more than Max_Loop = 3log1+ϵr times, rehash
the entire table

Cuckoo Hashing: Insert (Continued)

• Our present understanding: cuckoo hashing is good if we can afford
costly inserts and want O(1) time lookup and delete

• Claim: cuckoo hashing insert is expected amortized O(1) runtime

Insert Analysis

• Let h1 and h2 be from a universal hash family H that is at least as
strong as (1,Max_Loop) universal

▶ Research has shown that with probability 1−O(1
n2), we can treat h1

and h2 as independent random functions

• Let x1, x2, . . . , xk be the sequence of keys we encounter during insert

▶ We call x1, x2, . . . , xk nestless keys

Insert Analysis (Continued)

• Case 1: x1, x2, . . . , xk are all distinct (and thus we have a finite
sequence)

Insert Analysis (Continued)

• Case 2: x1, x2, . . . , xk has some repeated value xi = xj , i ̸= j, but we
have a finite sequence

Insert Analysis (Continued)

• Case 3: x1, x2, . . . , xm, . . . has some repeated values and forms an
infinite sequence (so we need to rehash the table)

Insert Analysis (Continued)

• With probability 1−O(1
n2) we treat h1 and h2 as random functions

and continue on with the analysis

• With probability O(1
n2) the worst case might as well happen and we

rehash

Insert Analysis: Lemma
Lemma
For a sequence of nestless keys that has not formed a closed loop,
x1, . . . , xk, there exists a consecutive subsequence xq, . . . , xq+ℓ−1 of
distinct keys where x1 = xq and ℓ ≥ k

3 .

“Proof” by Picture
Worst case:

Insert Analysis: Cases 1 and 2 Bounds

• By the previous lemma, there exists a sequence of at least k
3 distinct

nestless keys, b1, . . . , bv

• Then h1(b1) = h1(b2), h2(b2) = h2(b3), h1(b3) = h1(b4), . . . (or same
thing, but with h1 and h2 swapped)

• Less than nv−1 ways to have v distinct keys (v − 1 since we treat x1
as fixed)

• Since we are treating h1 and h2 are random, each way to select the
distinct keys has probability r−(v−1)

Insert Analysis: Cases 1 and 2 Bounds (Continued)

• Recall that r
n ≥ 1 + ϵ

• Probability for this case is 2nv−1r−v+1 = 2(rn)
−v+1 ≤ 2(1 + ϵ)−

k
3
+1

• Thus the probability that we get case 1 or 2 and see k keys is at
most 2(1 + ϵ)−

k
3
+1

Insert Analysis: Case 3 Bounds

• For a sequence of k nestless keys with a closed loop, let v be the
number of distinct keys

• Once again, we have less than nv−1 way to chose the remaining
distinct keys and rv−1 ways to put them in the table

• There are at most v3 ways to pick the start and end of the first loop
and the start of the second loop

• Each arrangement of nestless keys occurs with probability r−2v (r−v

for each hash function)

Insert Analysis: Case 3 Bounds (Continued)

• Altogether, the probability is bounded by

Σℓ
v=3v

3nv−1rv−1r−2v =
1

nr
Σℓ
v=3v

3nvrvr−2v

≤ 1

nr
Σ∞
v=3v

3(
r

n
)−v

≤ 1

nr
Σ∞
v=3v

3(1 + ϵ)−v

=
1

nO(n)
O(1)

= O(
1

n2
)

Insert Analysis (Continued)

• We can now calculate an upper bound on the expected value for the
number of nestless keys:

▶ 1: there is always at least one nestless key

▶
∑2∗Max_Loop

k=2 2(1 + ϵ)−
k
3+1: case 1 or 2 with between 2 and

2 ∗ Max_Loop nestless keys

▶
∑2∗Max_Loop

k=2 O(1
n2): case 3 with 2 ∗ Max_Loop nestless keys

• All together we have an expected number of nestless keys of
1 + Σ

2∗Max_Loop
k=2 (2(1 + ϵ)−

k
3
+1 +O(1

n2))

Insert Analysis (Continued)

1 + Σ
2∗Max_Loop
k=2 (2(1 + ϵ)−

k
3
+1 +O(

1

n2
))

≤ O(1) +O(
Max_Loop

n2
) +

∞∑
k=2

2(1 + ϵ)−
k
3

≤ O(1) +O(1) +O(1) = O(1)

• Thus we expect to encounter O(1) nestless keys, so ignoring when we
need to rehash or resize, we have an expected O(1) insert runtime

Cuckoo Hashing: Rehash Analysis
• We rehash when we have a sequence of 2 ∗ MAX_LOOP keys

• This can occur if:

▶ h1 and h2 are not random with O(1
n2) probability

▶ There is a closed loop with O(1
n2) probability

▶ We have a k = 2 ∗MAX_LOOP sequence of keys that do not form a
closed loop with probability

≤ 2(1 + ϵ)−
k
3+1 = 2(1 + ϵ)−

2
3∗MAX_LOOP+1

= 2(1 + ϵ)−2log1+ϵr+1

= O(
2

r2
)

= O(
1

n2
)

Cuckoo Hashing: Rehash Analysis (Continued)

• Each insert has O(1
n2) +O(1

n2) +O(1
n2) = O(1

n2) probability of
causing a rehash

• We need to reinsert n items with expected O(1) time per item, so
this takes O(n) time

• This holds unless we need to rehash again; n items have O(1
n2)

probability to cause a rehash, so we have O(1n) probability of
rehashing

• We have a decreasing geometric series =⇒ O(n) expected time to
rehash

• With an expected O(1) time insert about 1−O(1
n2) of the time and

an expected O(n) time insert the remaining O(1
n2) of the time, we

get an expected amortized O(1) insert runtime

Section 4

Conclusion

Recap

• We saw looked at hash functions and families, in particular (c, k)
universal hash families

• We looked at hash tables and well known hashing strategies

• We examined a new hashing strategy, Cuckoo Hashing, that has
guaranteed O(1) time lookup and delete, along with expected
amortized O(1) time insert

Questions?

Probability theory is nothing but common sense reduced to calculation.

— PIERRE-SIMON LAPLACE (1814)

Bibliography I

Charles Chen.

An overview of cuckoo hashing.

Accessed: 03-14-2024.

Erik Demaine and Oren Weimann.

Mit 6.851: Advanced data structures (spring 2007) lecture 11.

Accessed: 03-30-2024.

Jeff Erickson.

Algorithms, June 2019.

Accessed: 03-14-2024.

	Hashing Functions and Families
	Hash Tables and Hashing Strategies
	Cuckoo Hashing
	Conclusion

