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Section 1

Representing the Reals



Bases

Usually, we represent numbers using their bases.

• (425.91)10 = 4 · 102 + 2 · 101 + 5 · 100 + 9 · 10−1 + 1 · 10−2

• (1011.01)2 = 1 · 23+0 · 22+1 · 21+1 · 20+0 · 2−1+1 · 2−2 = (11.25)10

In a computer, this has some downsides though.
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Fixed-Point Representations

Say we had a fixed 32 bits to represent a decimal number. What are our
options?

A few choices:

• 16 bits for the integer portion, 16 bits for the decimal portion. This
means we can only represent up to 65535, but have a precision of
≈ 1.5 · 10−5

• 24 bits for the integer portion, 8 for the decimal? We can go up to
16777215, but our precision is only ≈ 0.004.

None of these are particularly ideal, we are either severely limiting the
largest number we can represent, or the smallest magnitude of precision
we have.
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Floating Point Representations

Floating point representations are quite similar to scientific notation.

• We can represent 37.56 as 3.756 · 101.

• We can represent (1011.011)2 as 1.011011 · 23.

• A nice property of binary is that the first bit of a number in this
scientific notation will always be 1.

• We represent a floating point number x as ±q · 2m, where m is the
exponent, and q is the “significand” of the form 1.f . We refer to f as
the fraction, or mantissa.
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Floating Point Representations
Our range of representations is much larger, but we aren’t as precise.

• Consider for example m ∈ [−4, 4] with two bits of the “fraction,”
giving us 6 total bits for our representation. What are the smallest
and largest values we can represent?

• NOTE: For simplicity, although we can represent 15 values with 4
bits in the exponent, we’re limiting it to 8 (between -4 and 4).

• x = 1.b1b2 · 2m: Smallest is (1.00)−4
2 = 0.0625, and the largest is

(1.11)2 · 24 = 28.

• We can represent much larger values with the same number of bits as
a fixed-point, regardless of how we split the fixed-point, while still
being able to represent smaller values as well. The only downside is,
we’re not as precise. How do we represent 27.0?

We cannot represent 27, we’re stuck approximating it as 28 or 24.
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IEEE-754 Single Precision

Figure: Stolen Borrowed from CS 357 Notes

IEEE-754 is very similar to a floating point representation but with a few
tweaks.

x = (−1)s1.f · 2m



Down to the bits

• We use 1 bit for the sign, s, leaving us 31 bits.

• We use 8 bits for the exponent, giving us 255 possible exponents. We
write m = c− 127, where c is the actual exponent stored in the
binary representation. We also reserve c = 0 and c = 255 for special
cases. The largest exponent is 127 and the smallest exponent is −126.

• The remaining 23 bits are the fractional part, also known as the
mantissa.

x = (−1)s1.f · 2m



Special Cases

• Zero?

We make all the bits in the exponent and the mantissa, or
fraction, 0 to represent 0. Since we don’t impact the sign, this means
that floats can be −0 or +0.

• Infinity? If a number is outside our range, we store it as infinity,
which we represent as 255 in the exponent, or by setting all the bits
to 1. We leave the mantissa set to all 0s.

• NaN? We set all 1s in the exponent again, but make the mantissa
non-zero.

Rounding values is an important consideration in most cases, take CS 357
(or just watch the two lectures associated with floating point numbers) to
understand how we use floating points and how we should be careful with
them.
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Matching bits

What happens if we take the bits in a floating point number and just
“pretend” that it’s an integer? What if we do the opposite?

Let us ignore the sign bit for a moment: x = 1.f · 2c−127. Reinterpreting
these bits as an integer, we get xint = c · 223 + f .

Converting an integer to a float is less clean, so I’ll leave that to you.
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Section 2

Abusing IEEE-754 for fun and profit



Fast Logarithms
• Let’s take the logarithm of our float representation.

• If we consider the mantissa and the exponent as integers, we can
write xfloat = (1 + f

223
) · 2c−127. If we take the logarithm of this:

log2((1 +
f

223
) · 2c−127) = log2(1 +

f

223
) + c− 127

• Recall that we can approximate log(1 + x) ≈ log(x), and we can add
an error correction factor µ, to make our approximation even tighter.

• So our log is now:

f

223
+ µ+ c− 127 =

1

223
(f + c · 223) + µ− 127
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Hmm

• Something suspicious has appeared. Our logarithm is of the form
k1(f + c · 223) + k2, where k1 and k2 are constants.

• Recall, however, that the integer reinterpretation of our floating
point number is f + c · 223.

• We can approximate log2(xfloat) as a linear transformation of xint.
No computation needed!

• How easy would it be to go from log2(xfloat) back to the regular
number?

• We just undo the linear transform: we’ve gotten all the log properties
for free!



Hmm

• Something suspicious has appeared. Our logarithm is of the form
k1(f + c · 223) + k2, where k1 and k2 are constants.

• Recall, however, that the integer reinterpretation of our floating
point number is f + c · 223.

• We can approximate log2(xfloat) as a linear transformation of xint.
No computation needed!

• How easy would it be to go from log2(xfloat) back to the regular
number?

• We just undo the linear transform: we’ve gotten all the log properties
for free!



Hmm

• Something suspicious has appeared. Our logarithm is of the form
k1(f + c · 223) + k2, where k1 and k2 are constants.

• Recall, however, that the integer reinterpretation of our floating
point number is f + c · 223.

• We can approximate log2(xfloat) as a linear transformation of xint.
No computation needed!

• How easy would it be to go from log2(xfloat) back to the regular
number?

• We just undo the linear transform: we’ve gotten all the log properties
for free!



Hmm

• Something suspicious has appeared. Our logarithm is of the form
k1(f + c · 223) + k2, where k1 and k2 are constants.

• Recall, however, that the integer reinterpretation of our floating
point number is f + c · 223.

• We can approximate log2(xfloat) as a linear transformation of xint.
No computation needed!

• How easy would it be to go from log2(xfloat) back to the regular
number?

• We just undo the linear transform: we’ve gotten all the log properties
for free!



Hmm

• Something suspicious has appeared. Our logarithm is of the form
k1(f + c · 223) + k2, where k1 and k2 are constants.

• Recall, however, that the integer reinterpretation of our floating
point number is f + c · 223.

• We can approximate log2(xfloat) as a linear transformation of xint.
No computation needed!

• How easy would it be to go from log2(xfloat) back to the regular
number?

• We just undo the linear transform: we’ve gotten all the log properties
for free!



Square root a log-approximated number

• Let’s take the square root of xfloat by abusing these properties.

• First, recall that k log(x) = log
(
xk

)
, so x

1/2
float = 21/2·log2(xfloat).

• So, we can compute 21/2·(k1xint+k2)

• How do we find our constants k1, k2, and do this computation
quickly?

• Let’s detour into taking the inverse square root
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Section 3

Quake’s Fast Inverse-Square-Root



A detour into history

1 float q_rsqrt(float number)
2 {
3 long i;
4 float x2, y;
5 const float threehalfs = 1.5F;
6
7 x2 = number * 0.5F;
8 y = number;
9 i = * ( long * ) &y; // evil floating point bit level

hacking↪→
10 i = 0x5f3759df - ( i >> 1 ); // what the fuck?
11 y = * ( float * ) &i;
12 y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
13 // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd

iteration, this can be removed↪→
14
15 return y;
16 }



Modernize

1 constexpr float Q_rsqrt(float number) noexcept
2 {
3 // only allow on IEEE-754 floats
4 static_assert(std::numeric_limits<float>::is_iec559);
5
6 // what the fuck? (left for historical accuracy)
7 // make use of std::bit_cast to avoid undefined behavior
8 float const y = std::bit_cast<float>(
9 0x5f3759df - (std::bit_cast<std::uint32_t>(number) >>

1));↪→
10 return y * (1.5f - (number * 0.5f * y * y));
11 }



evil floating point bit level hacking

i = * ( long * ) &y;

or
std::bit_cast<std::uint32_t>(number)

This reinterprets the floating point number as an integer.



what the fuck?
i = 0x5f3759df - ( i >> 1 );

• Recall that −1
2 log(y) = log

(
1√
y

)
• Call 1√

y = Y , and let us substitute the bit representation of each in
place of their log:

1

223
(fY + cY · 223) + µ− 127 = −1

2

(
1

223
(fy + cy · 223) + µ− 127

)

• Let’s solve for the bit representation of Y : fY + cY · 223:

fY + cY · 223 = 3

2
223(127− µ)− 1

2
(fy + cy · 223)
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• Let’s solve for the bit representation of Y : fY + cY · 223:

fY + cY · 223 = 3

2
223(127− µ)− 1

2
(fy + cy · 223)
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• How did we choose the “magic constant” µ?

• Historically, it’s unknown, and the choice of constant used in Quake
is actually not optimal.

• If you were doing this in your own program, plot the error and
minimize.
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Casting back

y = * ( float * ) &i;

or
float const y = std::bit_cast<float>(...);

• Are we done?

• We are quite close, but we’ve introduced a decent amount of error in
our assumptions.
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Newton’s Method, another detour
The goal: find c such that f(c) = 0

• We want to make a guess that is close to c

• Find the tangent line and solve for its 0:
0 = f(x0) + f ′(x0)(x1 − x0) =⇒ x1 = x0 − f(x0)

f ′(x0)

• Repeat until we’re happy

Figure: Paul’s Math Notes
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Newton’s method, on inverse square root

• We want to find 1√
x
, so minimize error(y) = 1

y2
− x

• Plugging into Newton’s method, we have:

y1 = y0 −
y−2
0 − x

−2y−3
0

=
1

2
y0(3− xy20)



Another look

1

2
y0(3− xy20)

1 constexpr float Q_rsqrt(float number) noexcept
2 {
3 // only allow on IEEE-754 floats
4 static_assert(std::numeric_limits<float>::is_iec559);
5
6 // what the fuck? (left for historical accuracy)
7 // make use of std::bit_cast to avoid undefined behavior
8 float const y = std::bit_cast<float>(
9 0x5f3759df - (std::bit_cast<std::uint32_t>(number) >>

1));↪→
10 return y * (1.5f - (number * 0.5f * y * y));
11 }



Does the fun stop here?

• The inverse square root does not have any divisions, so it is “fast.”

• Quake uses this for the inverse square root because taking the inverse
square root of a vector’s length is a common operation to normalize
a vector.

• We can approximate a lot of functions using this approach while
avoiding any divisions.



Does the fun stop here?

• The inverse square root does not have any divisions, so it is “fast.”

• Quake uses this for the inverse square root because taking the inverse
square root of a vector’s length is a common operation to normalize
a vector.

• We can approximate a lot of functions using this approach while
avoiding any divisions.



Does the fun stop here?

• The inverse square root does not have any divisions, so it is “fast.”

• Quake uses this for the inverse square root because taking the inverse
square root of a vector’s length is a common operation to normalize
a vector.

• We can approximate a lot of functions using this approach while
avoiding any divisions.



ECE Majors strike again
• Unfortunately, we’re not allowed to have fun in a world with

hardware engineers.

• Intel SSE (found on any computer made after 1999), has the
RSQRTSS instruction.
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All is not lost

• Inverse square root is such a common operation that it is built into
modern hardware

• But, keep in mind, when you’re doing any computation, logs and
powers are just a cast and linear transformation away.
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Questions?



Truth is much too complicated to allow anything but approximations.

— John Von Nuemann (1947)
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