Generating Functions

Franklin

Outline

Overview

Counting

Binary Trees
Enumeration
Path Length

Section 1

Overview

Introduction

Suppose we have a sequence $a_{0}, a_{1}, a_{2}, \ldots$
The generating function for this sequence is

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}+\cdots,
$$

a polynomial or power series whose coefficients are the elements of the sequence.

Generating functions enable us to use manipulations to learn more about the sequence.

Examples

$1,6,15,20,15,6,1$	$1+6 x+15 x^{2}+20 x^{3}+15 x^{4}+6 x^{5}+x^{6}=(1+x)^{6}$
$1,1,1,1, \ldots$	$1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}$
$0,1,1,2,3,5,8,13, \ldots$	$x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+8 x^{6}+13 x^{7}+\cdots$

Size

Often, the terms x^{k} of a generating function correspond to something of size k.

Consider the generating function from the Binomial Theorem:

$$
\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n}=(1+x)^{n} .
$$

The x^{k} term has coefficient $\binom{n}{k}$. Given a set with n elements, this coefficient is the number of ways to choose a subset of size k.

Section 2

Counting

Coin Tosses

Q: Flip 4 coins. How many ways are there to get 2 heads?
The answer is $\binom{4}{2}=6$, but let's see how generating functions can be used.
Consider a single coin - it either gives us 1 tail (no heads), or 1 head. There's only one way each of these can occur, so the generating function for a single coin is $1 \cdot x^{0}+1 \cdot x^{1}=1+x$.

Here x represents a head - the coefficient of x^{1} is the number of ways to get 1 head with a single coin. The "size" in this problem is the total number of heads - the x^{k} term will correspond to getting k heads.

Combining Generating Functions

Now let's combine 2 coins by multiplying their generating functions:

$$
(1+x)(1+x)=1 \cdot 1+1 \cdot x+x \cdot 1+x \cdot x=1+2 x+x^{2} .
$$

What does multiplying mean here?

- $1 \cdot 1=x^{0}$ corresponds to TT (no heads)
- $1 \cdot x=x^{1}$ corresponds to TH (1 head)
- $x \cdot 1=x^{1}$ corresponds to HT (1 head)
- $x \cdot x=x^{2}$ corresponds to HH (2 heads)

Each way to get k heads contributes a term of x^{k} to the product. So the coefficient of x^{k} in the product is the total number of ways to get k heads!

For 2 coins, there are 2 ways to get 1 head (coefficient of x in $1+2 x+x^{2}$).

More Coins

If we have 4 coins, simply multiply the generating functions for each:

$$
(1+x)(1+x)(1+x)(1+x)=(1+x)^{4}=1+4 x+6 x^{2}+4 x^{3}+1 .
$$

The coefficient of $x^{2}(6)$ is our answer - the number of ways to get 2 heads.

More generally, if we flip n coins, the number of ways to get k heads is the coefficient of x^{k} in $(1+x)^{n}$, which is $\binom{n}{k}$.

Changemaking

Q: How many ways can we make a dollar with (unlimited) pennies, nickels, and dimes?

The generating function for the amounts we can make in pennies is

$$
1+x+x^{2}+x^{3}+\cdots
$$

Here our "size" is the total money - the coefficient of x^{k} is the number of ways to make k cents.

For pennies, the coefficients are all 1 , because we can make k cents in exactly one way: use k pennies.

Changemaking

For nickels and dimes, the generating functions are

$$
1+x^{5}+x^{10}+\cdots, \quad 1+x^{10}+x^{20}+\cdots
$$

Putting it all together, our generating function using pennies, nickels, and dimes is

$$
\begin{aligned}
F(x) & =\left(1+x+x^{2}+\cdots\right)\left(1+x^{5}+x^{10}+\cdots\right)\left(1+x^{10}+x^{20}+\cdots\right) \\
& =\frac{1}{1-x} \cdot \frac{1}{1-x^{5}} \cdot \frac{1}{1-x^{10}} .
\end{aligned}
$$

The answer for making a dollar is the coefficient of x^{100}. This is nontrivial to find, but there are ways [Gas14], which we won't go into here.

Biased Coin Tosses

Q: There are n coins $C_{1}, C_{2}, \ldots, C_{n}$. For each k, coin C_{k} is biased so that, when tossed, it has probability $\frac{1}{(2 k+1)}$ of falling heads. If the n coins are tossed, what is the probability that the number of heads is odd? (Putnam 2001)
Consider coin C_{1}. It has a $\frac{1}{3}$ chance of being heads, and a $\frac{2}{3}$ chance of being tails.

The "size" in this problem is the total number of heads. For coin C_{1}, we can write the probability generating function $f_{1}(x)=\frac{1}{3} x+\frac{2}{3}$.
In other words, C_{1} has a $\frac{1}{3}$ chance of contributing 1 to the total number of heads, and a $\frac{2}{3}$ chance of contributing 0 .

Combining the Coins

The generating function for coin C_{k} is $f_{k}(x)=\frac{1}{2 k+1} x+\frac{2 k}{2 k+1}$.
Then the probability generating function for all coins is the product of the individual generating functions for each coin:

$$
F_{n}(x)=\left(\frac{1}{3} x+\frac{2}{3}\right)\left(\frac{1}{5} x+\frac{4}{5}\right) \cdots\left(\frac{1}{2 n+1} x+\frac{2 n}{2 n+1}\right) .
$$

Given k, this product produces an x^{k} term for every possible way to choose k factors to take an x term from, corresponding to choosing k coins to land heads. The probabilities for each coin are multiplied, producing the probability that k specific coins land on heads.

The overall coefficient of x^{k} is then the sum of all these probabilities over all combinations of k heads. This is the probability of getting k heads!

The Generating Function

We have

$$
\begin{aligned}
F_{n}(x) & =\left(\frac{1}{3} x+\frac{2}{3}\right)\left(\frac{1}{5} x+\frac{4}{5}\right) \cdots\left(\frac{1}{2 n+1} x+\frac{2 n}{2 n+1}\right) \\
& =\frac{(x+2)(x+4) \cdots(x+2 n)}{3 \cdot 5 \cdots(2 n+1)} \\
& =p_{0}+p_{1} x+p_{2} x^{2}+\cdots+p_{n} x^{n},
\end{aligned}
$$

where p_{k} is the probability of getting k heads.
Expanding the generating function and finding each coefficient is difficult. But we actually only want the probability that the total number of heads is odd:

$$
p_{1}+p_{3}+p_{5}+\cdots
$$

The Generating Function

A generating function is still a function of a variable. So what happens if we plug things in?

If we plug in $x=1$, we get

$$
F_{n}(1)=p_{0}+p_{1}+p_{2}+\cdots+p_{n}=\frac{(1+2)(1+4) \cdots(1+2 n)}{3 \cdot 5 \cdots(2 n+1)}=1 .
$$

That seems useful, but we only want the sum of every other coefficient. Let's try $x=-1$:

$$
\begin{aligned}
F_{n}(-1) & =p_{0}-p_{1}+p_{2}-\cdots \pm p_{n} \\
& =\frac{(-1+2)(-1+4) \cdots(-1+2 n)}{3 \cdot 5 \cdots(2 n-1)(2 n+1)}=\frac{1}{2 n+1} .
\end{aligned}
$$

Filtering Oddities

We have the sum and alternating sum of the coefficients. Subtracting them will cancel the terms we don't want:

$$
\begin{aligned}
F_{n}(1)-F_{n}(-1) & =2 p_{1}+2 p_{3}+2 p_{5}+\cdots \\
& =1-\frac{1}{2 n+1}=\frac{2 n}{2 n+1}
\end{aligned}
$$

So $p_{1}+p_{3}+p_{5}+\cdots=\frac{n}{2 n+1}$. That's our answer - the probability of getting an odd number of heads upon rolling the coins C_{1}, \ldots, C_{n}.

Roots of Unity Filter

Plugging in 1 and -1 is a common way to filter out every 2 nd term.
This technique can be extended to filter out every k th term, by plugging in the k th roots of unity (complex solutions to $x^{k}=1$).

If you're interested, I highly recommend this 3Blue1Brown video: https://youtu.be/bOXCLR3Wric.

It nicely presents a solution using generating functions and the roots of unity filter to the following problem:

Find the number of subsets of $\{1,2,3,4,5, \ldots, 2000\}$, the sum of whose elements is divisible by 5.

Section 3

Binary Trees

Subsection 1

Enumeration

Enumerating Binary Trees

Q: How many different binary trees have n nodes? [SF96]

- For $n=0$, there is 1 tree - the empty tree
- For $n=1$, there is 1 tree - a single node
- For $n=2$, there are 2 trees - a node with a left child, or a node with a right child
- For $n=3$, there are 5 trees:

The Generating Function

Let \mathcal{T} be the set of all binary trees. Given a tree $t \in \mathcal{T}$, let $|t|$ be the number of nodes in t. We want the number of trees in \mathcal{T} with n nodes (trees of "size" n).

Consider the generating function

$$
T(x)=\sum_{t \in \mathcal{T}} x^{|t|}
$$

In other words, each tree contributes a single term to the sum, which is determined by the number of nodes in that tree.

For example, the 3 -node trees on the previous slide would each contribute an x^{3} term to $T(x)$. Since there are exactly 5 trees with 3 nodes, the coefficient of x^{3} in $T(x)$ is $5 x^{3}$.

The Generating Function

So we have the generating function

$$
T(x)=\sum_{t \in \mathcal{T}} x^{|t|}=1+x+2 x^{2}+5 x^{3}+\cdots=\sum_{n \geq 0} T_{n} x^{n} .
$$

The coefficients T_{n} represent the number of binary trees with n nodes. We want to find an expression for T_{n}.

To use this generating function, we exploit the recursive structure of binary trees.

Recursive Structure

A binary tree t is either:

- Empty with 0 nodes, or
- A single node with a left subtree t_{L} and a right subtree t_{R} (binary trees) - with $1+\left|t_{L}\right|+\left|t_{R}\right|$ nodes total
- In this case, each tree t uniquely corresponds to a pair of trees $\left(t_{L}, t_{R}\right)$

Using this, we can write our generating function as follows:

$$
T(x)=\sum_{t \in \mathcal{T}} x^{|t|}=1+\sum_{t_{L} \in \mathcal{T}} \sum_{t_{R} \in \mathcal{T}} x^{\left|t_{L}\right|+\left|t_{R}\right|+1}
$$

A Functional Equation

Then,

$$
\begin{aligned}
T(x) & =1+\sum_{t_{L} \in \mathcal{T}} \sum_{t_{R} \in \mathcal{T}} x^{\left|t_{L}\right|+\left|t_{R}\right|+1} \\
& =1+x \sum_{t_{L} \in \mathcal{T}} x^{\left|t_{L}\right|} \sum_{t_{R} \in \mathcal{T}} x^{\left|t_{R}\right|} \\
& =1+x T(x)^{2} .
\end{aligned}
$$

Solving for $T(x)$ using the quadratic formula,

$$
T(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x} .
$$

Since $T(0)=1$, we take the minus sign.

Binomial Expansion

We need to expand our expression for $T(x)$ to extract coefficients.
According to an extended form of the binomial theorem,

$$
(1+y)^{1 / 2}=1+\binom{1 / 2}{1} y+\binom{1 / 2}{2} y^{2}+\binom{1 / 2}{3} y^{3}+\cdots=\sum_{k=0}^{\infty}\binom{1 / 2}{k} y^{k}
$$

where we can generalize the definition of $\binom{n}{k}$ to real n as follows:

$$
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}
$$

Extracting Coefficients

Using this expansion with $y=-4 x$,

$$
\begin{aligned}
T(x) & =\frac{1-\sqrt{1-4 x}}{2 x} \\
& =\frac{1-\left(1+\binom{1 / 2}{1}(-4 x)+\binom{1 / 2}{2}(-4 x)^{2}+\binom{1 / 2}{3}(-4 x)^{3}+\cdots\right)}{2 x}
\end{aligned}
$$

After some simplification, we find that the coefficient of x^{n} is

$$
T_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

This is the number of binary trees with n nodes! Note: The numbers T_{n} are called the Catalan numbers.

Subsection 2

Path Length

Path Length

Given a binary tree t, its path length $\pi(t)$ is the sum of the lengths of the paths from the root to each node in the tree.

For example, this binary tree has path length $0+1+1+2+3=7$.

If we divide the path length by the number of nodes, we get the average distance from the root to a node in the tree. This is useful for analyzing algorithms that involve searching for nodes in a tree.

Path Length in Random Trees

Q: What is the expected path length of a random binary tree with n nodes? [SF96]

Here, "random" means that each of the T_{n} binary trees with n nodes has an equal probability of being selected (random binary Catalan trees).

- This is often used in compiler design for parse trees for expression evaluation. However, other models of random trees exist.

In other words, over all binary trees with n nodes, what is the average path length?

We'll answer this question using a similar approach to enumerating binary trees.

The Generating Function

Recall that \mathcal{T} is the set of all binary trees.
Define the cumulative generating function

$$
C_{T}(x)=\sum_{t \in \mathcal{T}} \pi(t) x^{|t|}=\sum_{n \geq 0} C_{n} x^{n} .
$$

In the middle is the generating function written summing tree-by-tree. On the right, all the like terms are collected, and we sum over each term.

The coefficients C_{n} tell us the total path length over all trees with n nodes.

Example

Here are the five 3-node trees from earlier, and their contribution to $C_{T}(x)$:

$2 x^{3}$

$3 x^{3}$

$3 x^{3}$

$3 x^{3}$

The coefficient corresponds to path length; the exponent of x corresponds to the number of nodes.

Recursive Definition of Path Length

Consider the tree t from earlier; its subtrees t_{L} and t_{R} are colored.

When t_{L} is split off from t, the "new root" is one level lower.

So the depths of the nodes in t_{L} are one less than the depths of the same nodes of in t.

The same is true for t_{R}.

So $\pi(t)=0+\pi\left(t_{L}\right)+\left|t_{L}\right|+\pi\left(t_{R}\right)+\left|t_{R}\right|$.

Using Recursion

Now,

$$
\begin{aligned}
C_{T}(x) & =\sum_{t \in \mathcal{T}} \pi(t) x^{|t|} \\
& =\sum_{t_{L} \in \mathcal{T}} \sum_{t_{R} \in \mathcal{T}}\left(\pi\left(t_{L}\right)+\pi\left(t_{R}\right)+\left|t_{L}\right|+\left|t_{R}\right|\right) x^{\left|t_{L}\right|+\left|t_{R}\right|+1}
\end{aligned}
$$

Note that there's no constant term $(1+\cdots)$ since the only tree with 0 nodes (the empty tree) has path length 0 , so the coefficient of x^{0} is 0 .

This expands into 4 parts. The first is

$$
\sum_{t_{L} \in \mathcal{T}} \sum_{t_{R} \in \mathcal{T}} \pi\left(t_{L}\right) x^{\left|t_{L}\right|+\left|t_{R}\right|+1}=x \sum_{t_{L} \in \mathcal{T}} \pi\left(t_{L}\right) x^{\left|t_{L}\right|} \sum_{t_{R} \in \mathcal{T}} x^{\left|t_{R}\right|}=x C_{T}(x) T(x) .
$$

Expansion

The second part is similarly

$$
\sum_{t_{L} \in \mathcal{T}} \sum_{t_{R} \in \mathcal{T}} \pi\left(t_{R}\right) x^{\left|t_{L}\right|+\left|t_{R}\right|+1}=x \sum_{t_{L} \in \mathcal{T}} x^{\left|t_{L}\right|} \sum_{t_{R} \in \mathcal{T}} \pi\left(t_{R}\right) x^{\left|t_{R}\right|}=x T(x) C_{T}(x)
$$

The third part is (recall $T(x)=\sum_{t \in \mathcal{T}} x^{|t|}$, so $T^{\prime}(x)=\sum_{t \in \mathcal{T}}|t| x^{|t|-1}$)

$$
\sum_{t_{L} \in \mathcal{T}} \sum_{t_{R} \in \mathcal{T}}\left|t_{L}\right| x^{\left|t_{L}\right|+\left|t_{R}\right|+1}=x^{2} \sum_{t_{L} \in \mathcal{T}}\left|t_{L}\right| x^{\left|t_{L}\right|-1} \sum_{t_{R} \in \mathcal{T}} x^{\left|t_{R}\right|}=x^{2} T^{\prime}(x) T(x)
$$

Similarly, the fourth part is

$$
\sum_{t_{L} \in \mathcal{T}} \sum_{t_{R} \in \mathcal{T}}\left|t_{R}\right| x^{\left|t_{L}\right|+\left|t_{R}\right|+1}=x^{2} \sum_{t_{L} \in \mathcal{T}} x^{\left|t_{L}\right|} \sum_{t_{R} \in \mathcal{T}}\left|t_{R}\right| x^{\left|t_{R}\right|-1}=x^{2} T(x) T^{\prime}(x) .
$$

The Functional Equation

Putting it all together,

$$
\begin{aligned}
C_{T}(x) & =\sum_{t \in \mathcal{T}} \pi(t) x^{|t|} \\
& =\sum_{t_{L} \in \mathcal{T}} \sum_{t_{R} \in \mathcal{T}}\left(\pi\left(t_{L}\right)+\pi\left(t_{R}\right)+\left|t_{L}\right|+\left|t_{R}\right|\right) x^{\left|t_{L}\right|+\left|t_{R}\right|+1} \\
& =2 x C_{T}(x) T(x)+2 x^{2} T(x) T^{\prime}(x) .
\end{aligned}
$$

Earlier we found that $T(x)=\frac{1-\sqrt{1-4 x}}{2 x}$. Solving for $C_{T}(x)$,

$$
C_{T}(x)=\frac{2 x^{2} T(x) T^{\prime}(x)}{1-2 x T(x)}=\frac{1}{x}\left(\frac{x}{1-4 x}-\frac{1-x}{\sqrt{1-4 x}}+1\right) .
$$

Coefficients

The coefficient of x^{n} is the total path length over all binary trees with n nodes.

We want the average path length, so we divide the coefficient by the number of trees with n nodes: T_{n}.

After some messy expansions, the average path length comes out as

$$
\frac{(n+1) 4^{n}}{\binom{2 n}{n}}-3 n-1=n \sqrt{\pi n}-3 n+O(\sqrt{n})
$$

Other Applications of Generating Functions

- General trees, permutations, strings/regular expressions, many other combinatorial structures for analyzing algorithms
- Symbolic method (analytic combinatorics)
- To get the generating function $T(x)$ for binary trees, we can actually just write this, since a tree is either empty or a node and two subtrees:

$$
\mathcal{T}=\{\square\}+\{\bullet\} \times \mathcal{T} \times \mathcal{T} \Longrightarrow T(x)=1+x T(x)^{2}
$$

- Snake Oil method: evaluate terrible sums like $f_{n}=\sum_{k}\binom{n+k}{2 k} 2^{n-k}$ by throwing them in as coefficients of a generating function and swapping the order of summation
- Solving recurrences (e.g. finding a formula for Fibonacci numbers)

Questions?

A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag.

- George Polya (1954)

Bibliography I

Philippe Flajolet and Robert Sedgewick.Analytic Combinatorics.
Cambridge University Press, USA, 1 edition, 2009.William Gasarch.

How many ways can you make change: Some easy proofs, 2014.Michel Goemans.

Generating functions.
https://math.mit.edu/~goemans/18310S15/generating-function-notes.pdf, 2015.

Robert Sedgewick and Philippe Flajolet.
An introduction to the analysis of algorithms.
Addison-Wesley Longman Publishing Co., Inc., USA, 1996.

Bibliography II

Herbert S. Wilf.

Generatingfunctionology.
A. K. Peters, Ltd., USA, 2006.

