
Generating Functions

Franklin

Outline

Overview

Counting

Binary Trees

Enumeration

Path Length

Section 1

Overview

Introduction

Suppose we have a sequence a0, a1, a2,

The generating function for this sequence is

f(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k + · · · ,

a polynomial or power series whose coefficients are the elements of the
sequence.

Generating functions enable us to use manipulations to learn more about
the sequence.

Examples

1, 6, 15, 20, 15, 6, 1 1 + 6x+ 15x2 + 20x3 + 15x4 + 6x5 + x6 = (1 + x)6

1, 1, 1, 1, . . . 1 + x+ x2 + x3 + · · · = 1

1− x

0, 1, 1, 2, 3, 5, 8, 13, . . . x+ x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 + · · ·

Size

Often, the terms xk of a generating function correspond to something of
size k.

Consider the generating function from the Binomial Theorem:(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn = (1 + x)n.

The xk term has coefficient
(
n

k

)
. Given a set with n elements, this

coefficient is the number of ways to choose a subset of size k.

Section 2

Counting

Coin Tosses

Q: Flip 4 coins. How many ways are there to get 2 heads?

The answer is
(
4
2

)
= 6, but let’s see how generating functions can be used.

Consider a single coin – it either gives us 1 tail (no heads), or 1 head.
There’s only one way each of these can occur, so the generating function
for a single coin is 1 · x0 + 1 · x1 = 1 + x.

Here x represents a head – the coefficient of x1 is the number of ways to
get 1 head with a single coin. The "size" in this problem is the total
number of heads – the xk term will correspond to getting k heads.

Combining Generating Functions
Now let’s combine 2 coins by multiplying their generating functions:

(1 + x)(1 + x) = 1 · 1 + 1 · x+ x · 1 + x · x = 1 + 2x+ x2.

What does multiplying mean here?

• 1 · 1 = x0 corresponds to TT (no heads)

• 1 · x = x1 corresponds to TH (1 head)

• x · 1 = x1 corresponds to HT (1 head)

• x · x = x2 corresponds to HH (2 heads)

Each way to get k heads contributes a term of xk to the product. So the
coefficient of xk in the product is the total number of ways to get k heads!

For 2 coins, there are 2 ways to get 1 head (coefficient of x in 1+ 2x+ x2).

More Coins

If we have 4 coins, simply multiply the generating functions for each:

(1 + x)(1 + x)(1 + x)(1 + x) = (1 + x)4 = 1 + 4x+ 6x2 + 4x3 + 1.

The coefficient of x2 (6) is our answer – the number of ways to get 2
heads.

More generally, if we flip n coins, the number of ways to get k heads is
the coefficient of xk in (1 + x)n, which is

(
n
k

)
.

Changemaking

Q: How many ways can we make a dollar with (unlimited) pennies,
nickels, and dimes?

The generating function for the amounts we can make in pennies is

1 + x+ x2 + x3 + · · · .

Here our "size" is the total money – the coefficient of xk is the number of
ways to make k cents.

For pennies, the coefficients are all 1, because we can make k cents in
exactly one way: use k pennies.

Changemaking

For nickels and dimes, the generating functions are

1 + x5 + x10 + · · · , 1 + x10 + x20 + · · · .

Putting it all together, our generating function using pennies, nickels, and
dimes is

F (x) = (1 + x+ x2 + · · ·)(1 + x5 + x10 + · · ·)(1 + x10 + x20 + · · ·)

=
1

1− x
· 1

1− x5
· 1

1− x10
.

The answer for making a dollar is the coefficient of x100. This is nontrivial
to find, but there are ways [Gas14], which we won’t go into here.

Biased Coin Tosses

Q: There are n coins C1, C2, . . . , Cn. For each k, coin Ck is biased so
that, when tossed, it has probability 1

(2k+1) of falling heads. If the n coins
are tossed, what is the probability that the number of heads is odd?
(Putnam 2001)

Consider coin C1. It has a 1
3 chance of being heads, and a 2

3 chance of
being tails.

The "size" in this problem is the total number of heads. For coin C1, we
can write the probability generating function f1(x) =

1
3x+ 2

3 .

In other words, C1 has a 1
3 chance of contributing 1 to the total number

of heads, and a 2
3 chance of contributing 0.

Combining the Coins

The generating function for coin Ck is fk(x) =
1

2k+1x+ 2k
2k+1 .

Then the probability generating function for all coins is the product of
the individual generating functions for each coin:

Fn(x) =

(
1

3
x+

2

3

)(
1

5
x+

4

5

)
· · ·

(
1

2n+ 1
x+

2n

2n+ 1

)
.

Given k, this product produces an xk term for every possible way to
choose k factors to take an x term from, corresponding to choosing k
coins to land heads. The probabilities for each coin are multiplied,
producing the probability that k specific coins land on heads.

The overall coefficient of xk is then the sum of all these probabilities over
all combinations of k heads. This is the probability of getting k heads!

The Generating Function

We have

Fn(x) =

(
1

3
x+

2

3

)(
1

5
x+

4

5

)
· · ·

(
1

2n+ 1
x+

2n

2n+ 1

)
=

(x+ 2)(x+ 4) · · · (x+ 2n)

3 · 5 · · · (2n+ 1)

= p0 + p1x+ p2x
2 + · · ·+ pnx

n,

where pk is the probability of getting k heads.

Expanding the generating function and finding each coefficient is difficult.
But we actually only want the probability that the total number of heads
is odd:

p1 + p3 + p5 + · · · .

The Generating Function

A generating function is still a function of a variable. So what happens if
we plug things in?

If we plug in x = 1, we get

Fn(1) = p0 + p1 + p2 + · · ·+ pn =
(1 + 2)(1 + 4) · · · (1 + 2n)

3 · 5 · · · (2n+ 1)
= 1.

That seems useful, but we only want the sum of every other coefficient.
Let’s try x = −1:

Fn(−1) = p0 − p1 + p2 − · · · ± pn

=
(−1 + 2)(−1 + 4) · · · (−1 + 2n)

3 · 5 · · · (2n− 1)(2n+ 1)
=

1

2n+ 1
.

Filtering Oddities

We have the sum and alternating sum of the coefficients. Subtracting
them will cancel the terms we don’t want:

Fn(1)− Fn(−1) = 2p1 + 2p3 + 2p5 + · · ·

= 1− 1

2n+ 1
=

2n

2n+ 1
.

So p1 + p3 + p5 + · · · = n
2n+1 . That’s our answer – the probability of

getting an odd number of heads upon rolling the coins C1, . . . , Cn.

Roots of Unity Filter

Plugging in 1 and −1 is a common way to filter out every 2nd term.

This technique can be extended to filter out every kth term, by plugging
in the kth roots of unity (complex solutions to xk = 1).

If you’re interested, I highly recommend this 3Blue1Brown video:
https://youtu.be/bOXCLR3Wric.

It nicely presents a solution using generating functions and the roots of
unity filter to the following problem:

Find the number of subsets of {1, 2, 3, 4, 5, . . . , 2000}, the sum of
whose elements is divisible by 5.

https://youtu.be/bOXCLR3Wric

Section 3

Binary Trees

Subsection 1

Enumeration

Enumerating Binary Trees

Q: How many different binary trees have n nodes? [SF96]

• For n = 0, there is 1 tree – the empty tree

• For n = 1, there is 1 tree – a single node

• For n = 2, there are 2 trees – a node with a left child, or a node with
a right child

• For n = 3, there are 5 trees:

The Generating Function

Let T be the set of all binary trees. Given a tree t ∈ T , let |t| be the
number of nodes in t. We want the number of trees in T with n nodes
(trees of "size" n).

Consider the generating function

T (x) =
∑
t∈T

x|t|.

In other words, each tree contributes a single term to the sum, which is
determined by the number of nodes in that tree.

For example, the 3-node trees on the previous slide would each contribute
an x3 term to T (x). Since there are exactly 5 trees with 3 nodes, the
coefficient of x3 in T (x) is 5x3.

The Generating Function

So we have the generating function

T (x) =
∑
t∈T

x|t| = 1 + x+ 2x2 + 5x3 + · · · =
∑
n≥0

Tnx
n.

The coefficients Tn represent the number of binary trees with n nodes.
We want to find an expression for Tn.

To use this generating function, we exploit the recursive structure of
binary trees.

Recursive Structure

A binary tree t is either:

• Empty with 0 nodes, or

• A single node with a left subtree tL and a right subtree tR (binary
trees) – with 1 + |tL|+ |tR| nodes total

▶ In this case, each tree t uniquely corresponds to a pair of trees (tL, tR)

Using this, we can write our generating function as follows:

T (x) =
∑
t∈T

x|t| = 1 +
∑
tL∈T

∑
tR∈T

x|tL|+|tR|+1

A Functional Equation

Then,

T (x) = 1 +
∑
tL∈T

∑
tR∈T

x|tL|+|tR|+1

= 1 + x
∑
tL∈T

x|tL|
∑
tR∈T

x|tR|

= 1 + xT (x)2.

Solving for T (x) using the quadratic formula,

T (x) =
1±

√
1− 4x

2x
.

Since T (0) = 1, we take the minus sign.

Binomial Expansion

We need to expand our expression for T (x) to extract coefficients.

According to an extended form of the binomial theorem,

(1 + y)1/2 = 1 +

(
1/2

1

)
y +

(
1/2

2

)
y2 +

(
1/2

3

)
y3 + · · · =

∞∑
k=0

(
1/2

k

)
yk.

where we can generalize the definition of
(
n

k

)
to real n as follows:

(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
.

Extracting Coefficients

Using this expansion with y = −4x,

T (x) =
1−

√
1− 4x

2x

=
1−

(
1 +

(
1/2
1

)
(−4x) +

(
1/2
2

)
(−4x)2 +

(
1/2
3

)
(−4x)3 + · · ·

)
2x

After some simplification, we find that the coefficient of xn is

Tn =
1

n+ 1

(
2n

n

)
.

This is the number of binary trees with n nodes! Note: The numbers Tn

are called the Catalan numbers.

Subsection 2

Path Length

Path Length

Given a binary tree t, its path length π(t) is the sum of the lengths of
the paths from the root to each node in the tree.

For example, this binary tree has path length
0 + 1 + 1 + 2 + 3 = 7.

0

1

2

3

1

If we divide the path length by the number of nodes, we get the average
distance from the root to a node in the tree. This is useful for analyzing
algorithms that involve searching for nodes in a tree.

Path Length in Random Trees

Q: What is the expected path length of a random binary tree with n
nodes? [SF96]

Here, "random" means that each of the Tn binary trees with n nodes has
an equal probability of being selected (random binary Catalan trees).

• This is often used in compiler design for parse trees for expression
evaluation. However, other models of random trees exist.

In other words, over all binary trees with n nodes, what is the average
path length?

We’ll answer this question using a similar approach to enumerating binary
trees.

The Generating Function

Recall that T is the set of all binary trees.

Define the cumulative generating function

CT (x) =
∑
t∈T

π(t)x|t| =
∑
n≥0

Cnx
n.

In the middle is the generating function written summing tree-by-tree.
On the right, all the like terms are collected, and we sum over each term.

The coefficients Cn tell us the total path length over all trees with n
nodes.

Example

Here are the five 3-node trees from earlier, and their contribution to
CT (x):

0

1 1

2x3

0

1

2

3x3

0

1

2

3x3

0

1

2

3x3

0

1

2

3x3

The coefficient corresponds to path length; the exponent of x corresponds
to the number of nodes.

Recursive Definition of Path Length

Consider the tree t from earlier; its subtrees tL and tR are colored.

0

1

2

3

1 =⇒ 0

1

2

0

When tL is split off from t, the "new
root" is one level lower.

So the depths of the nodes in tL are
one less than the depths of the same
nodes of in t.

The same is true for tR.

So π(t) = 0 + π(tL) + |tL|+ π(tR) + |tR|.

Using Recursion

Now,

CT (x) =
∑
t∈T

π(t)x|t|

=
∑
tL∈T

∑
tR∈T

(π(tL) + π(tR) + |tL|+ |tR|)x|tL|+|tR|+1

Note that there’s no constant term (1 + · · ·) since the only tree with 0
nodes (the empty tree) has path length 0, so the coefficient of x0 is 0.

This expands into 4 parts. The first is∑
tL∈T

∑
tR∈T

π(tL)x
|tL|+|tR|+1 = x

∑
tL∈T

π(tL)x
|tL|

∑
tR∈T

x|tR| = xCT (x)T (x).

Expansion
The second part is similarly∑
tL∈T

∑
tR∈T

π(tR)x
|tL|+|tR|+1 = x

∑
tL∈T

x|tL|
∑
tR∈T

π(tR)x
|tR| = xT (x)CT (x).

The third part is (recall T (x) =
∑
t∈T

x|t|, so T ′(x) =
∑
t∈T

|t|x|t|−1)

∑
tL∈T

∑
tR∈T

|tL|x|tL|+|tR|+1 = x2
∑
tL∈T

|tL|x|tL|−1
∑
tR∈T

x|tR| = x2T ′(x)T (x).

Similarly, the fourth part is∑
tL∈T

∑
tR∈T

|tR|x|tL|+|tR|+1 = x2
∑
tL∈T

x|tL|
∑
tR∈T

|tR|x|tR|−1 = x2T (x)T ′(x).

The Functional Equation

Putting it all together,

CT (x) =
∑
t∈T

π(t)x|t|

=
∑
tL∈T

∑
tR∈T

(π(tL) + π(tR) + |tL|+ |tR|)x|tL|+|tR|+1

= 2xCT (x)T (x) + 2x2T (x)T ′(x).

Earlier we found that T (x) =
1−

√
1− 4x

2x
. Solving for CT (x),

CT (x) =
2x2T (x)T ′(x)

1− 2xT (x)
=

1

x

(
x

1− 4x
− 1− x√

1− 4x
+ 1

)
.

Coefficients

The coefficient of xn is the total path length over all binary trees with n
nodes.

We want the average path length, so we divide the coefficient by the
number of trees with n nodes: Tn.

After some messy expansions, the average path length comes out as

(n+ 1)4n(
2n
n

) − 3n− 1 = n
√
πn− 3n+O(

√
n).

Other Applications of Generating Functions
• General trees, permutations, strings/regular expressions, many other

combinatorial structures for analyzing algorithms

• Symbolic method (analytic combinatorics)

▶ To get the generating function T (x) for binary trees, we can actually
just write this, since a tree is either empty or a node and two subtrees:

T = {□}+ {•} × T × T =⇒ T (x) = 1 + xT (x)2.

• Snake Oil method: evaluate terrible sums like fn =
∑
k

(
n+ k

2k

)
2n−k

by throwing them in as coefficients of a generating function and
swapping the order of summation

• Solving recurrences (e.g. finding a formula for Fibonacci numbers)

Questions?

A generating function is a device somewhat similar to a bag. Instead of carrying

many little objects detachedly, which could be embarrassing, we put them all in a

bag, and then we have only one object to carry, the bag.

— George Polya (1954)

Bibliography I

Philippe Flajolet and Robert Sedgewick.

Analytic Combinatorics.

Cambridge University Press, USA, 1 edition, 2009.

William Gasarch.

How many ways can you make change: Some easy proofs, 2014.

Michel Goemans.

Generating functions.

https://math.mit.edu/~goemans/18310S15/generating-function-notes.pdf, 2015.

Robert Sedgewick and Philippe Flajolet.

An introduction to the analysis of algorithms.

Addison-Wesley Longman Publishing Co., Inc., USA, 1996.

https://math.mit.edu/~goemans/18310S15/generating-function-notes.pdf

Bibliography II

Herbert S. Wilf.

Generatingfunctionology.

A. K. Peters, Ltd., USA, 2006.

	Overview
	Counting
	Binary Trees
	Enumeration
	Path Length

