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Section 1

Overview



Introduction

Suppose we have a sequence ag, ay,as,. ...

The generating function for this sequence is
f(x):a0+a1$+a2x2—|—---+akxk+... ,

a polynomial or power series whose coefficients are the elements of the
sequence.

Generating functions enable us to use manipulations to learn more about
the sequence.



Examples

1,6,15,20,15,6,1 | 1+ 6z + 1522 + 2023 + 152 + 62° + 20 = (1 + 2)8

1

1,1,1,1,... 14+ 224+224+... =
1—=x

0,1,1,2,3,5,8,13, ... x4 2% + 223 + 3% + 52® + 828 + 1327 + - -

)



Size

Often, the terms z* of a generating function correspond to something of
size k.

Consider the generating function from the Binomial Theorem:

@ N @H (§>w2+~+ <Z>x —(1+a)m

n
The zF term has coefficient i) Given a set with n elements, this

coefficient is the number of ways to choose a subset of size k.



Section 2

Counting



Coin Tosses

Q: Flip 4 coins. How many ways are there to get 2 heads?

The answer is (;1) = 6, but let’s see how generating functions can be used.

Consider a single coin — it either gives us 1 tail (no heads), or 1 head.
There’s only one way each of these can occur, so the generating function
for a single coinis 1-2°0 +1-2' =1+ 2.

Here x represents a head — the coefficient of 2! is the number of ways to
get 1 head with a single coin. The "size" in this problem is the total
number of heads — the 2* term will correspond to getting k heads.
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Combining Generating Functions
Now let’s combine 2 coins by multiplying their generating functions:
(A4+z)1+2z)=1-14+1-24+z- 14z -2=1+2z+2°
What does multiplying mean here?
e 1.1 =2 corresponds to TT (no heads)

o |.x=2o!

corresponds to TH (1 head)
® 7.1 =g! corresponds to HT (1 head)
® 1.2 = 22 corresponds to HH (2 heads)

Each way to get k heads contributes a term of 2* to the product. So the
coefficient of z* in the product is the total number of ways to get k heads!

For 2 coins, there are 2 ways to get 1 head (coefficient of = in 1+ 2z + 2?).



More Coins

If we have 4 coins, simply multiply the generating functions for each:
(1+2)1+2)(1+2)(1+2)=(1+2)* =1+42 + 62 +42° + 1.

The coefficient of 22 (6) is our answer — the number of ways to get 2
heads.

More generally, if we flip n coins, the number of ways to get k heads is

the coefficient of z* in (14 x)", which is (}).



Changemaking

Q: How many ways can we make a dollar with (unlimited) pennies,
nickels, and dimes?

The generating function for the amounts we can make in pennies is
l+o+a?+ad ...

Here our "size" is the total money — the coefficient of * is the number of
ways to make k cents.

For pennies, the coefficients are all 1, because we can make k cents in
exactly one way: use k pennies.
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Changemaking

For nickels and dimes, the generating functions are
1425 +204+.... 142104 220

Putting it all together, our generating function using pennies, nickels, and
dimes is

Fa)=Q+4z+22+--)Q+25+20+.. )1 +204220+...)
! 1 1
S l—z 1—25 1—g10°

The answer for making a dollar is the coefficient of 2'%°. This is nontrivial
to find, but there are ways [Gas14], which we won’t go into here. 2 :



Biased Coin Tosses

Q: There are n coins C1,Co,...,C,. For each k, coin C}, is biased so

that, when tossed, it has probability m of falling heads. If the n coins
are tossed, what is the probability that the number of heads is odd?

(Putnam 2001)

Consider coin C;. It has a % chance of being heads, and a % chance of
being tails.

The "size" in this problem is the total number of heads. For coin C;, we
can write the probability generating function fi(x) = %m + %

In other words, C' has a % chance of contributing 1 to the total number

of heads, and a % chance of contributing 0. Z



Combining the Coins

The generating function for coin Cy is fi(x) = ﬁm + %

Then the probability generating function for all coins is the product of
the individual generating functions for each coin:

F.(z) = lx—i-g lx—i-% ! x + 2n
3T 3\ 5 2n+1"  2n+1)°

Given k, this product produces an z* term for every possible way to
choose k factors to take an x term from, corresponding to choosing k
coins to land heads. The probabilities for each coin are multiplied,
producing the probability that k specific coins land on heads.

The overall coefficient of z* is then the sum of all these probabilities over 2

all combinations of k£ heads. This is the probability of getting k£ heads!



The Generating Function
We have

= (33) () (s 20
(z+2)(z+4)--- (z+2n)

3-5---(2n+1)
= Do +p1$+p2$2+---+]7n$n7

where pi, is the probability of getting k& heads.

Expanding the generating function and finding each coefficient is difficult.

But we actually only want the probability that the total number of heads
is odd:

PL+p3+ps -+



The Generating Function

A generating function is still a function of a variable. So what happens if
we plug things in?

If we plug in x = 1, we get

(L+2)(1+4)---(1+2n)

F 1 — o« e pr—
n(l) =po+p1+p2+---+pn 3-5---(2n+1)

= 1.

That seems useful, but we only want the sum of every other coefficient.
Let’s try ¢z = —1:

Fo(=1)=po—p1+p2—-Epn
(=14+2)(-1+4)---(-1+2n) 1
3:5---2n—1)(2n+1)  2n+1




Filtering Oddities

We have the sum and alternating sum of the coefficients. Subtracting
them will cancel the terms we don’t want:

F(1) = F(—1) = 2p1 + 2p3 + 2p5 + - - -
1 _2n

=1 = .
2n +1 2n +1

So p1 +p3 +ps + -+ = 5,57 That’s our answer — the probability of
getting an odd number of heads upon rolling the coins Ch, ..., Ch.



Roots of Unity Filter

Plugging in 1 and —1 is a common way to filter out every 2nd term.

This technique can be extended to filter out every kth term, by plugging
in the kth roots of unity (complex solutions to z* = 1).

If you're interested, I highly recommend this 3BluelBrown video:
https://youtu.be/bOXCLR3Wric.

It nicely presents a solution using generating functions and the roots of
unity filter to the following problem:

Find the number of subsets of {1,2,3,4,5,...,2000}, the sum of

whose elements is divisible by 5.


https://youtu.be/bOXCLR3Wric
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Subsection 1

Enumeration



Enumerating Binary Trees

Q: How many different binary trees have n nodes? [SF96]
® For n = 0, there is 1 tree — the empty tree
® For n =1, there is 1 tree — a single node

® For n = 2, there are 2 trees — a node with a left child, or a node with
a right child

e For n = 3, there are 5 trees:

b F4r Y g



The Generating Function

Let 7 be the set of all binary trees. Given a tree t € T, let |t| be the
number of nodes in t. We want the number of trees in 7 with n nodes
(trees of "size" n).

Consider the generating function
T(z) = Z .
teT

In other words, each tree contributes a single term to the sum, which is
determined by the number of nodes in that tree.

For example, the 3-node trees on the previous slide would each contribute
an z° term to T'(x). Since there are exactly 5 trees with 3 nodes, the
coefficient of z® in T'(z) is 5z3. E



The Generating Function

So we have the generating function

T(z) = Zx‘” =142+ 202 4523+ = ZTn:c".
teT n>0

The coefficients T}, represent the number of binary trees with n nodes.
We want to find an expression for 7;,.

To use this generating function, we exploit the recursive structure of
binary trees.



Recursive Structure

A binary tree t is either:
® Empty with 0 nodes, or

® A single node with a left subtree t7, and a right subtree tp (binary
trees) — with 1+ |tz| + |tgr| nodes total

> In this case, each tree t uniquely corresponds to a pair of trees (t,,tgr)
Using this, we can write our generating function as follows:

T(x) = Zx'tl =1+ Z Z pltl+ltr[+1

teT tL€T treT



A Functional Equation

Then,

T(@)=1+3, > ot

trL €T treT

— 14z Z Zltr] Z ZltRl

tLeT treT
=1+ 2T (x)%

Solving for T'(x) using the quadratic formula,

1+ -4z

T(x) o

Since T'(0) = 1, we take the minus sign.



Binomial Expansion

We need to expand our expression for T'(z) to extract coefficients.
According to an extended form of the binomial theorem,

(L+y)2=1+ (1{2)1; + <1é2> v+ (142>y3 +o= i (122) y*.

k=0

n
where we can generalize the definition of (

k) to real n as follows:

<Z> :n(n—1)~-l-€!(n—k+1)



Extracting Coefficients

Using this expansion with y = —4x,
1-v1-—-4
T(@) = —5—
= (1 ()40 + () (40 + () (4 4 )

2z

After some simplification, we find that the coefficient of =" is

T - 1 <2n>
n+1\n

This is the number of binary trees with n nodes! Note: The numbers T},
are called the Catalan numbers.
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Path Length



Path Length

Given a binary tree t, its path length 7(¢) is the sum of the lengths of
the paths from the root to each node in the tree.

For example, this binary tree has path length c o
0+1+1+2+3=T7. 9

If we divide the path length by the number of nodes, we get the average
distance from the root to a node in the tree. This is useful for analyzing § :

algorithms that involve searching for nodes in a tree.



Path Length in Random Trees

Q: What is the expected path length of a random binary tree with n
nodes? [SF96]

Here, "random" means that each of the T, binary trees with n nodes has
an equal probability of being selected (random binary Catalan trees).

® This is often used in compiler design for parse trees for expression
evaluation. However, other models of random trees exist.

In other words, over all binary trees with n nodes, what is the average
path length?

We’ll answer this question using a similar approach to enumerating binary
trees.



The Generating Function

Recall that T is the set of all binary trees.
Define the cumulative generating function
Cr(x) = Zw(t)m‘ﬂ = Z Cpz™.
teT n>0

In the middle is the generating function written summing tree-by-tree.
On the right, all the like terms are collected, and we sum over each term.

The coefficients C), tell us the total path length over all trees with n
nodes.



Example

Here are the five 3-node trees from earlier, and their contribution to

Cr(x):

O © ©) ©)
(L @) (D @
ORORENE) @ @ @

The coefficient corresponds to path length; the exponent of & corresponds

to the number of nodes. E



Recursive Definition of Path Length

Consider the tree t from earlier; its subtrees t;, and tr are colored.

@ When ¢y, is split off from ¢, the "new

root" is one level lower.
=
o @ So the depths of the nodes in ¢, are

one less than the depths of the same
nodes of in t.

The same is true for tpg.

Som(t) =04 n(tr) + |tr| + 7(tr) + |tr|.



Using Recursion

Now,

Cr(z) =Y m(t)z!

teT

= 3 3 (rltn) + wltn) + [tr] + fer])ale A
tr, €T treT

Note that there’s no constant term (1 + - --) since the only tree with 0
nodes (the empty tree) has path length 0, so the coefficient of 20 is 0.

This expands into 4 parts. The first is

Z Z (tp)a!te I HERIFL — Z (tp)z!t! Z 27l = 2O (2)T ().

tr, €T treT treT treT E



Expansion
The second part is similarly

(tg)zlteltltrl+l — 4 13
2, ) mline 2 )

tr €T treT trLeT treT

The third part is (recall T'(z Z 2 so T (x
teT

Z Z |tp|alteHERIFL — 42 Z It |altel =1 Z 2Rl = 22T (2)T ().

trL €T treT treT

Similarly, the fourth part is

Z Z |t g|zleiRlL = 42 Z sl Z ltp|2trI = = 227 ()T ().

trL €T treT treT tr€eT

Yaltrl = 2T(2)Cp ().

Z |t|x\t| 1

teT
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The Functional Equation

Putting it all together,

Cr(z) =Y m(t)z!

teT
= > (wltn) + wltr) + |to] + [tr])2 IR
trL, €T treT
= 2207 (2)T(z) + 22°T(2)T' ().
1-+v1-4
Earlier we found that T'(z) = 2733 Solving for Cr(x),
x

22T (2)T" 1 1—

Cr(z) = T (z) (:1:):7 x T )

1 — 22T (x) r\1—4z 1—4x

2



Coefficients

The coefficient of z” is the total path length over all binary trees with n
nodes.

We want the average path length, so we divide the coefficient by the
number of trees with n nodes: T,,.

After some messy expansions, the average path length comes out as

(n+1)4"

&) —3n—1=nymn —3n+ O(v/n).



Other Applications of Generating Functions
¢ General trees, permutations, strings/regular expressions, many other
combinatorial structures for analyzing algorithms
e Symbolic method (analytic combinatorics)

> To get the generating function T'(z) for binary trees, we can actually

just write this, since a tree is either empty or a node and two subtrees:

T={0}+{e} x T xT = T(z)=1+2T(x)".

¢ Snake Oil method: evaluate terrible sums like f, = Z <n2—;k> on—k
k

by throwing them in as coefficients of a generating function and
swapping the order of summation

® Solving recurrences (e.g. finding a formula for Fibonacci numbers)

2



Questions?



A generating function is a device somewhat similar to a bag. Instead of carrying
many little objects detachedly, which could be embarrassing, we put them all in a
bag, and then we have only one object to carry, the bag.

— George Polya (1954)
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