
Quantum Complexity Theory

Eyad Loutfi

"My contention is the following: Quantum mechanics is what you
would inevitably come up with if you started from probability theory,
and then said, let’s try to generalize it so that the numbers we used to
call ‘probabilities’ can be negative numbers. As such, the theory could
have been invented by mathematicians in the 19th century without

any input from experiment. It wasn’t, but it could have been."
- Scott Aaronson

Section 1

Basics of Complexity

Turing Machines
• First we need to introduce our model of computation. The classic

model of computation is the Turing machine.

• TM’s are defined over a finite alphabet, have an infinite tape that
has the input at the start of it, a read head with internal state that
starts at the start of the tape and can write or move left or right all
according to some finite instructions (represented as a transition
function based on the head’s state and character in the cell it’s over).

Turing Machines
• A more intuitive way to think about TM’s - and that makes it clear

why this is a very natural definition to come up with if you live in a
time before computers - is to consider a model with the following
features:

▶ The world as an idealized grid

▶ An idealized mathematician who can only move one cell at a time

▶ Can read and write one symbol at a time (alternatively, can simply
change the symbols/"alphabet" to represent words, doesn’t matter so
long as there’s only a finite number of choices).

• All choices one can make is finite - implicitly a function or "response"
of a finite number of states of ourselves and our surrounding
environment. Note these "finite instructions" can still yield
unbounded behavior. We’re allowing behavior to go on forever,
whereas in real life us and computers have finite lives.

Turing Machines

• While this might seem extremely broad and philosophical - and not
specifically the same: That’s the point! While we won’t prove it, the
Turing Machine model is very robust, you can change numerous
specifics without effecting most results in the field.

• i.e. changing the number of tapes or the dimension of the tape does
not change computability at all.

• Moreover if we’re trying to study problems based on intrinsic
difficulty, complexity theorists often classify problems broadly on
whether they require polynomial or exponential time. These changes
to a TM can provably gain at most only a polynomial speedup, so it
does not make a difference. This all points in the direction of the
Turing machine being the "right model."

Computability

• Specifically, the Church Turing thesis states that anything that can
be "computed" can be done by a Turing machine. While this is not a
formal statement, and therefore not the type that can even be
proved, hopefully you’ve seen why intuitively it feels self evident.

• Note that once we fix the exact TM model, like programs they end
up being defined by precise descriptions, so in a sense they are
strings themselves!

• One can devise an encoding scheme of all programs – many such
encodings exist, could use all binary strings or all ASCII strings, etc.

Computability

• More importantly, the encoding is done in such a way that a program
can recognize it – such that we can define a program to simulate the
behavior of a machine as a result of parsing the encoding.

• This means we can define a program to be able to simulate any other
program – a very important result!

• Other important definitions: A set is “recursively enumerable,” or RE
if there exists a program that can give a “yes” answer to any string in
the set. A set is “computable” or “decidable" if a program like that
exists that also gives a “no” answer for any string not in the set.

• These properties are not guaranteed in general due to possibility of
infinite looping.

Complexity Basics

• Computability and complexity theory are the study of the
fundamental limitations of computation - namely computability in
the former, and time and space requirements in the latter.

• Specifically we will often study these in the context of decision
problems, problems phrased as "yes" or "no" answers to whether an
input is in a set. Typically, the decision problem and the
corresponding set - or "language" that defines it are used
interchangeably in the language of theoretical computer science.

Uncomputability
We can further prove not all decision problems are computable.

Theorem
The halting problem is undecidable. That is - the set of all pairs of
encodings of Turing Machines with inputs (so an arbitrary ⟨M,x⟩), such
that that respective Turing machine halts on that input - is an
uncomputable set.

Proof
1. Suppose not. That is ∃ TM M that decides this set.
2. We can create a new machine M ′ that simulates M on the input to

M ′, such that if the input is an encoding of a machine that halts, we
program M ′ to loop forever, while if it’s a machine that loops forever,
we program M ′ to halt.

3. Now if we give M ′ the input ⟨M ′, ⟨M ′⟩⟩, this implies M ′ halts on
⟨M ′⟩ ⇔ M ′ loops forever on it - a contradiction.

Diagonalization

• This technique of creating a contradiction through self reference,
called diagonalization will be seen again.

• Often involves assuming some self referential structure with a
property is true, then constructing a similar structure that fulfills the
opposite of that property, asking a carefully constructed question
about itself that will lead to contradiction.

• Diagonalization was the cornerstone of basically all early results in
logic, set theory, computability, and complexity theory during the
late 19th and first half of the 20th century.

Diagonalization - Other Examples
▶ "This sentence is a lie." Is this sentence the truth or a lie?

▶ Descartes - "I think therefore I am." Suppose your thoughts do not
exist. Now ask "does the thought of ‘your thoughts do not exist’"
exist?

▶ Russell - Suppose the set of all sets that do not contain themselves
exists. Now ask, "does this set contain itself"?

▶ Godel - Consider the guaranteed to exist Godel sentence of any axiom
system F that contains even just basic arithmetic, which is the
statement G ⇔ "F does not prove G". Now ask, "can F prove G"?

Diagonalization - Other Examples
• Cantor - Suppose the real numbers between 0 and 1 can be listed on

a list enumerated by the natural numbers. Is the real number in
(0, 1) that’s ith digit is different from the ith digit of the ith real
number on that list, in that list? (This is why it’s "diagonal").

Complexity Basics

• P is the class of all computable sets for which a Turing machine
exists that gives a "yes" or "no" answer to membership with a
polynomial number of steps relative to the input size.

• NP is the class of all computable sets for which a Turing machine
exists that, while not required to have such a polynomial runtime,
there will exist some other Turing Machine called a "verifier."

• The verifier takes in a second input in addition to the regular input,
such that for all strings x in the set, there exists a string s where
|s| = poly(|x|) such that s being in the second input will cause the
Turing machine to accept in polynomial time. We therefore say that
NP is the class of problems that have polynomial verification for
"yes" answers.

Complexity Basics
• This "special string" is often called a "witness" or "certificate" and

can be thought of as a "proof" for membership of the regular input,
specifically a polynomial sized proof.

• It may be strange to connect proofs to computability, however all
methods for doing proofs that we know of are in fact via computable
inference rules - rules that can be programmed into a Turing
Machine. Therefore provability "under the hood" is really just
knowledge that’s computable.

• P is trivially in NP - can simply choose corresponding polynomial
time Turing Machine for a set in P and have any string accepted as
the second input for the verifier.

• The other direction however, if NP ⊆ P is unknown and known to
be one of the biggest open problems in Math and Computer Science.

Complexity Basics
• In general the class DTIME(T(n)) is the set of all problems that can

be solved by a Turing machine with time T (n) relative to input size,
and likewise DSPACE(T(n)) is the same but for the corresponding
space requirement instead of the time requirement.

• For any complexity class A, the class co-A is the set of complements
of decision problems in A. Namely, this means co-NP is identified by
stipulating polynomial time verification for "no" answers rather than
"yes" answers. It is also an open problem whether NP = co-NP.

• Intuitively most of the canonical NP problems you can think of,
Boolean/Circuit satisfiability, Travelling Salesman, etc are problems
with which we don’t know how to do better than an exponential
brute force search looking for a certain solution (or lack thereof), but
which you could immediately confirm/"verify" if you actually had
that solution.

Complexity Basics - Reductions

• In the context of computability theory, we say a problem Q reduces
to K, or Q ≤ K if solving K enables us to solve Q. This is called a
reduction.

• In the context of complexity theory, we say the same only if it
enables us to solve Q in polynomial time. While we still call it a
reduction, it’s a polynomial time reduction, because the exact
reduction/algorithm that uses our answer to K to solve Q has to run
in polynomial time.

• For a class A, we say a problem is A-hard if every problem in A
reduces to it. We say it’s A-complete if it’s A-hard and also in A.

Complexity Basics

• What we think the world looks like (but have yet to prove):

Complexity Basics - Oracles

• We will often also consider computational power with oracles. An
oracle O for a problem K is a black box we can give our machine
access to, such that whenever it gives it an input it instantly outputs
the answer to K for that input.

• The class AB is the set of problems that would be in A if we allow
Turing machines access to oracles for problems in B.

• Going back to computability theory, you can actually define an
oracle for undecidable problems like the halting problem, and even
then there are still other undecidable problems.

• Since we can keep giving oracles for those, this yields an infinite
tower of classes of undecidable problems that quantifies how
undecidable they are - called the arithmetic hierarchy.

Hierarchy of Complexity

Complexity Basics - Polynomial Hierarchy
• Similar to the Arithmetic Hierarchy, we can apply the same logic of

building an infinite tower by successively adding oracles for the
previous levels - but this time specifically to the class NP.

• What we obtain is called the polynomial hierarchy, however this has
a lot more uncertainty regarding it, namely if any of the levels are
distinct at all (for instance if P = NP or any two successive levels are
the same, the hierarchy above it collapses).

Section 2

Quantum Computing

Qubits

• A qubit is essentially a unit vector, α|0⟩+ β|1⟩, where {|0⟩, |1⟩} is
our standard orthonormal basis, representing the classical bits 0 and
1 respectively, and α, β ∈ C.

• Whereas a qubit may be equal to one of those bits, in general it’s
neither, and we refer to it as a superposition of those states, until we
apply what’s called measurement.

• Once we do that, it will be a 0 with probability α2 and a 1 with
probability β2.

• Note that the stipulation that it’s a unit vector implies α2 + β2 = 1.

Quantum Gates

• We can further perform logical operations on qubits like we could for
classical bits, these "quantum gates" are essentially unitary matrices.

• A matrix being unitary means it has an inverse, and namely it’s
inverse is it’s conjugate transpose.

• It furthermore has the property that it preserves inner products and
norms, so our vector will remain a unit vector.

Multiple Qubits

• If we have multiple qubits together like above, we can define it as one
state via the tensor product:

• Note that the sum of the squares of the coefficients is still equal to 1.

Multiple Qubits Continued

• In general the state vector of n qubits is expressed as∑
x∈{0,1}n αx|x⟩ where

∑
x∈{0,1}n α

2
x = 1.

• While we can apply unitaries/gate operations to a multi qubit
system, note that for n qubits our overall vector is in C2n , and so our
unitary matrix will be 2n × 2n dimensions.

Quantum Circuits

• While a quantum turing machine is a well defined object, because of
simplicity we often prefer to work in what’s called the quantum
circuit model.

• We say that a problem is computable by classical circuits if there
exists a uniform circuit family {Cn}n∈N such for any n bit input, Cn

outputs a 1 for "yes" answers and a 0 for "no" answers.

• The uniformity requirement means there exists a Turing machine
that on input 1n outputs the description of Cn. This is important
since arbitrary circuit families {Cn}n∈N could implement any boolean
function, thus solving undecidable problems which we don’t want.

Quantum Circuits Continued
• Quantum circuit families are going to be similarly defined, but on

qubits instead of bits (and such that they’re initially not in
superposition, so the inputs can be considered the same bitstring
inputs as classical circuits) and using unitaries instead of logic gates.

• Unlike classical circuits however where we can have gates that take in
multiple bits and return just one, this is not possible with quantum
gates, especially since unitaries are completely reversible.

• Therefore quantum computation will always output the same number
of bits as it takes.

• Normally in addition to our input bitstring, there will be extra
ancilliary qubits all initialized to |0⟩ that serve as extra "work"
qubits in addition to one qubit designated as the output qubit that
gives our output when measured at the end.

Quantum Circuits Continued

• Note that the required extra work qubits needed will always be linear
to the input bitstring’s length.

• It’s important to still have one designated output qubit since we’re
still dealing with decision problems, problems with which we care
about a boolean "yes" or "no" answer to.

• Famous gates: Hadamard, or H gate takes |0⟩ to 1√
2
|0⟩+ 1√

2
|1⟩ and

|1⟩ to 1√
2
|0⟩ − 1√

2
|1⟩, producing an equal superposition between the

two bits.

• The CNOT gate applies to two qubits, and flips the second qubit if
and only if the first qubit is |1⟩, while the toffoli, or CCNOT gate is
a 3 qubit gate that flips the third qubit if and only if the first 2
qubits are both 1.

Entanglement

• Two qubits are entangled if they cannot be represented as the tensor
product of any other 2 qubits. Essentially it’s making them strongly
correlated, and in such a way that the whole is essentially
inseparable from the part.

• The most famous way to do this is using a Hadamard followed by a
CNOT gate, as in the below example (note that the coefficients are
ommitted but are always 1√

2
for the superposition states below).

BQP and Simulating Classical Circuits

• Note that due to Quantum Mechanics being inherently probabilistic,
we often define acceptence with respect to a certain probability.
Specifically, the class BQP , or bounded error quantum polynomial
time is the class of problems that can be solved correctly with
greater than 2

3 probability on quantum circuits where the size of the
circuit (number of gates) is poly(n).

• Note that by simply repeating and taking majority vote a polynomial
number of times, the acceptance probability can be brought
arbitrarily close to 1. This is called amplification

• It can further be proved that for any problem that can be solved
using classical circuits, there exists quantum circuits that also solve
it with ≥ 2

3 probability using a polynomial number of H and
CCNOT gates relative to size of the classical circuit.

Why care about Quantum?

• The main reason to care about Quantum computing is because it
represents the most serious challenge we have yet to the Extended
Church Turing Thesis: the idea that the Turing machine not only can
do anything that’s physically "computable," but can do it within
polynomial time of any other physically possible model of
computation.

• Most famously, Shor’s algorithm is a quantum polynomial algorithm
for finding a prime factorization, a well known NP problem.

• This hints at something, either there is a very real quantum
advantage that exists to the fundamental Turing machine model,
which will especially be the case if we can find a quantum algorithm
for NP complete problems.

Why care about Quantum?

• Alternatively maybe factoring does have a classical polynomial
algorithm, (though I personally think that’s doubtful given how
much time has failed to find one).

• It could also be the case that it has quantum advantage but only for
solving certain NP "intermediate" problems that factoring happens
to be one of. If that’s the case, then it would be helpful to study
quantum computing, if not for anything then to understand the
structure of what makes these problems different.

Section 3

Oracle Separation of NP and BQP

NP and BQP
• Though they both contain P, it is unknown whether NP ⊆ BQP or

BQP ⊆ NP .

• It is believed however that they are incomparable with respect to set
inclusion - that is they each have their own respective exclusive
problems.

• Therefore their relationship is believed to look like this:

Simon’s Problem

• Often the cases where quantum advantage are most exemplified are
in "promise problems," problems where we’re given some black box
with a guaranteed promise about it’s properties.

• Simon’s problem is this: given a function (and black box for it)
f : {0, 1}n → {0, 1}n that’s guaranteed to exclusively match one of
two properties:

▶ Either injection, f(x) = f(y) ⇒ x = y

▶ Or not injective but a two-to-one Simon’s function, meaning ∃s ̸= 0
such that ∀x, y, f(x) = f(y) ⇔ y = x⊕ s

The problem is to decide which one it is.

Oracle Separations

• Simon’s theorem: ∃ a quantum algorithm solving this problem with
O(n) queries (to the given black box that computes f), while any
classical algorithm would require Θ(2

n
2) queries (the quantum

algorithm later actually served as inspiration for Shor’s algorithm).

• While there is no proof that BQP ⊈ NP , we can use Simon’s
problem to prove there exists an oracle O such that BQPO ⊈ NPO.

• This is important since these oracle separations at the very least offer
heuristic evidence for the sets being different. We will proceed to
show this proof.

BQPO not in NPO

• Let {fn}n∈N be a sequence of functions fn : {0, 1}n → {0, 1}n such
that

fn =

{
uniform 1− 1 with probability 0.5
uniform simon’s function with probability 0.5

• Our oracle O : {0, 1}∗ → {0, 1}∗ is such that on input x such that
|x| = k,O(x) = fk(x).

• We will consider the language coSimonO = {1n|fn is a one to one
function}

BQPO not in NPO Continued
• Since Simon’s theorem establishes an O(n) quantum algorithm that

decides Simon’s problem - that is solves it for both "yes" and "no"
cases with probability greater than 2

3 , coSimonO is clearly in BQPO.

• The reason we’re considering this instead of just Simon’s problem is
because the secret string s can be used as a certificate for an NP
machine to solve Simon’s problem/efficiently verify any "yes" answer
to a function being a Simon’s function.

• On input 1n simply choose a length n input x, compute y = x⊕ s
which guarantees that x ̸= y since s is not zero, and then you’d
simply verify that O(x) = O(y) (which implies fn(x) = fn(y)).

• It is not clear there is such a certificate for the "no" answers - the
cases where fn is one to one, so we might hope that this can be
exploited to show coSimonO /∈ NPO.

BQPO not in NPO Continued

• The key insight is we’re going to actually build the oracle O and
sequence {fn}n∈N that coSimonO depends on in it’s definition, such
that O and {fn}n∈N still meet the criteria we’ve specified their
definitions must meet.

• However they will be constructed in such a way that coSimonO is
not empty and no possible deterministic Turing machine M with
oracle access to O can verify "yes" answers to coSimonO in
polynomial time - which would prove it is not in NPO.

• This will essentially be done via a diagonal argument.

BQPO not in NPO Continued

Theorem
∃O such that BQPO ⊈ NPO

Proof
▶ Let M1,M2, ... be an enumeration of all Turing machines that can query

some oracle (note that should we choose to replace an oracle on the same
machine, it’s algorithm will be the exact same - there is no difference other
than the oracle’s outputs and any behavior contingent on that).

▶ Let pi(n) be the time Mi takes which is some poly(n)
▶ Starting with i = 1, for each machine Mi, we choose the smallest number

ni such that fni
has not yet been defined and such that pi(ni) ≤

√
2ni−1

(as that’s smaller than the lower bound on number of queries needed to
classically guarantee an answer for what fni

is).

BQPO not in NPO Continued

Proof
▶ We choose an injective function to assign to fni

. For values of n in between
all the ni’s we choose, we also choose their respective fn functions
arbitrarily, however unlike the fni functions those get left alone for the rest
of our construction.

▶ Now we run Mi on 1ni . If the output is a "no" answer for fni
being a one

to one function, that is clearly incorrect and we do nothing.
▶ If it’s a "yes" answer, we reassign fni

to be a Simon’s function, but one
specifically constructed so that the output of all the values in {0, 1}ni

which were queried by Mi are left unchanged (remember that this is
acceptable with the function still being different, since the number of
possible queries is far less than total possible inputs by being less than or
equal to

√
2ni−1 < 2ni).

BQPO not in NPO Continued

Proof
▶ This implies the machine will have the exact same behavior with this

function, meaning on some NP certificate a "yes" will be output even
though it should now be a "no" since it’s a Simon’s function.

▶ Therefore we have guaranteed that this oracle O and respective sequence
we’ve constructed {fn}n∈N will be such that it is not possible for any Mi to
accept coSimonO with polynomial time verification for "yes" answers. For
each one there will be some input 1ni that causes it to fail.

▶ So BQPO ⊈ NPO. QED

Final Remarks

• There have been many oracle separations over the years in Quantum
Complexity Theory, including a similar one to show NPO ⊈ BQPO.

• Most significantly, in recent years it’s even been found that there is
an oracle separation showing BQPO ⊈ PHO.

• The implications of even these heuristic arguments for what could be
actual separations are endless, and I hope like me you see how it’s an
exciting time for the field!

The End

• "Turning to quantum mechanics...secret, secret, close the doors! we
always have had a great deal of difficulty in understanding the world
view that quantum mechanics represents... It has not yet become
obvious to me that there’s no real problem. I cannot define the real
problem, therefore I suspect there’s no real problem, but I’m not sure
there’s no real problem. So that’s why I like to investigate things." -
Richard Feynman

• Classes to take if you love this stuff: CS 474, CS 475, CS 579, special
topics CS quantum computing and quantum complexity offerings.

	Basics of Complexity
	Quantum Computing
	Oracle Separation of NP and BQP

