RSA

Sasha Levinshteyn

Outline

Public-Key Cryptosystems

RSA Algorithm

Proof of Correctness

Conclusion

Section 1

Public-Key Cryptosystems

General Idea

- Each user publicizes their encryption procedure E
- The user determines their corresponding decryption procedure D
- The user does not reveal D

Goal

- Alice has a message M to send to Bob
- Need an encryption method E and a decryption method D such that
- $D(E(M))=M=E(D(M))$
- Both E and D are easy to compute
- Publicly revealing E doesn't reveal D
- We want an encryption key (e, n) and a decryption key (d, n)

Section 2

RSA Algorithm

Key Distribution

- If Bob sends a message M to Alice...
- Alice sends her public encryption key (e, n) to Bob
- She keeps her private decryption key d

Encryption

- Bob turns his message M into some number $m<n$
- Long messages can be split up into chunks
- He computes the ciphertext c using the encryption algorithm E :

$$
c \equiv E(m) \equiv m^{e} \quad \bmod n
$$

- Computers would use exponentiation by repeating squaring and multiplication

Decryption

- Alice receive the ciphertext c
- She decrypts it and finds m using the decryption algorithm D :

$$
m \equiv D(c) \equiv c^{d} \quad \bmod n
$$

- How do we find a valid e, d, and n ?

Key Generation

1. Choose 2 prime numbers p and q
2. Compute $n=p \cdot q$
3. Compute $\phi(n)=(p-1) \cdot(q-1)$

- We actually use the Carmichael function now instead

$$
\Longrightarrow \lambda(n)=\operatorname{lcm}(p-1, q-1)
$$

4. Choose d relatively prime to $\phi(n)$

$$
\Longrightarrow \operatorname{gcd}(d, \phi(n))=1
$$

5. Choose e to be the multiplicative inverse of $d \bmod \phi(n)$ $\Longrightarrow e \cdot d=1 \bmod \phi(n)$

- Computers would use Euclid's algorithm

Example

1. Choose $p=47$ and $q=59$
2. Compute $n=p \cdot q=47 \cdot 59=2773$
3. Compute $\phi(n)=(p-1) \cdot(q-1)=46 \cdot 58=2668$
4. Choose $d=157$, which is relatively prime to $\phi(n)=2668$
5. We find that $e=17$ as $17 \cdot 157 \equiv 1 \bmod 2773$
6. We release $(n, e)=(2773,17)$ as our public key and keep $d=157$ as our private key

Example

1. Convert the message to numbers and encrypt

ITS ALL GREEK TO ME

$\Longrightarrow 0920190001121200071805051100201500130500$
$\Longrightarrow 0948234210841444266323900778077402191655$
2. We write the first block $(m=920)$ as

$$
m^{17} \equiv 920^{17} \equiv 948 \quad \bmod 2773
$$

Section 3

Proof of Correctness

Proof

- $\phi(n)$ is the Euler totient function returning the number of integers k less than n relatively prime to n

$$
\Longrightarrow \operatorname{gcd}(k, n)=1, k<n
$$

- Note that for a prime number p,

$$
\phi(p)=p-1
$$

- Then,

$$
\begin{aligned}
\phi(n) & =\phi(p) \cdot \phi(q) \\
& =(p-1) \cdot(q-1)
\end{aligned}
$$

More Proof

- d is relatively prime to $\phi(n) \Longrightarrow d$ has a multiplicative inverse $\bmod \phi(n)$
- Consider $D(E(m))$ and $E(D(m))$

$$
\begin{array}{ll}
D(E(m)) \equiv(E(m))^{d} \equiv\left(m^{e}\right)^{d} \equiv m^{e \cdot d} & \bmod n \\
E(D(m)) \equiv(D(m))^{e} \equiv\left(m^{d}\right)^{e} \equiv m^{e \cdot d} & \bmod n
\end{array}
$$

- Then,

$$
e \cdot d \equiv 1 \quad \bmod \phi(n) \Longrightarrow m^{e \cdot d} \equiv m^{k \cdot \phi(n)+1} \quad \bmod n
$$

Even More Proof

- For any integer a which is relatively prime to b,

$$
a^{\phi(b)} \equiv 1 \quad \bmod b
$$

- So, as $p-1$ and $q-1$ divide $\phi(n)$

$$
\begin{array}{lll}
m^{p-1} \equiv 1 & \bmod p \Longrightarrow m^{k \cdot \phi(n)+1}=m & \bmod p \\
m^{q-1} \equiv 1 & \bmod q \Longrightarrow m^{k \cdot \phi(n)+1}=m & \bmod q
\end{array}
$$

- These equations yield that for all m (as they are trivially true for $m \equiv 0 \bmod p$),

$$
m^{e \cdot d} \equiv m^{k \cdot \phi(n)+1}=m \quad \bmod n
$$

Security

- Security relies on the difficulty of factoring n
- About 200 digits long and 3.8×10^{9} years to factor by 1977 standards
- Typically a few hundred digits now
- If we were to know p and q, we could perhaps find d from e
- Computing $\phi(n)$ would allow us to find d as the multiplicative inverse of $e \bmod \phi(n)$
- Finding $\phi(n)$ or determining d otherwise is at least as hard as factoring n
- If only there was some way to factor n in polynomial time...

Section 4
Conclusion

Conclusion

- RSA is very cool
- Average Passover with too much wine moment (this is supposedly how Rivest came up with this idea)

Questions?

The era of electronic mail may soon be upon us.

- Rivest, Shamir, and Adleman (1977)
[SA77]

Bibliography I

R.L. Rivest A. Shamir and L. Adleman.

A method for obtaining digital signatures and public-key cryptosystems.
https://people.csail.mit.edu/rivest/Rsapaper.pdf, 1977.
Accessed: 03-17-2024.

