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Section 1

Public-Key Cryptosystems



General Idea

• Each user publicizes their encryption procedure E

• The user determines their corresponding decryption procedure D

• The user does not reveal D



Goal

• Alice has a message M to send to Bob

• Need an encryption method E and a decryption method D such that

▶ D(E(M)) = M = E(D(M))

▶ Both E and D are easy to compute

▶ Publicly revealing E doesn’t reveal D

• We want an encryption key (e, n) and a decryption key (d, n)



Section 2

RSA Algorithm



Key Distribution

• If Bob sends a message M to Alice...

• Alice sends her public encryption key (e, n) to Bob

• She keeps her private decryption key d



Encryption

• Bob turns his message M into some number m < n

• Long messages can be split up into chunks

• He computes the ciphertext c using the encryption algorithm E:

c ≡ E(m) ≡ me mod n

• Computers would use exponentiation by repeating squaring and
multiplication



Decryption

• Alice receive the ciphertext c

• She decrypts it and finds m using the decryption algorithm D:

m ≡ D(c) ≡ cd mod n

• How do we find a valid e, d, and n?



Key Generation

1. Choose 2 prime numbers p and q

2. Compute n = p · q

3. Compute ϕ(n) = (p− 1) · (q − 1)

▶ We actually use the Carmichael function now instead
=⇒ λ(n) = lcm(p− 1, q − 1)

4. Choose d relatively prime to ϕ(n)
=⇒ gcd(d, ϕ(n)) = 1

5. Choose e to be the multiplicative inverse of d mod ϕ(n)
=⇒ e · d = 1 mod ϕ(n)

▶ Computers would use Euclid’s algorithm



Example

1. Choose p = 47 and q = 59

2. Compute n = p · q = 47 · 59 = 2773

3. Compute ϕ(n) = (p− 1) · (q − 1) = 46 · 58 = 2668

4. Choose d = 157, which is relatively prime to ϕ(n) = 2668

5. We find that e = 17 as 17 · 157 ≡ 1 mod 2773

6. We release (n, e) = (2773, 17) as our public key and keep d = 157 as
our private key



Example

1. Convert the message to numbers and encrypt

ITS ALL GREEK TO ME
=⇒ 0920190001121200071805051100201500130500

=⇒ 0948234210841444266323900778077402191655

2. We write the first block (m = 920) as

m17 ≡ 92017 ≡ 948 mod 2773



Section 3

Proof of Correctness



Proof

• ϕ(n) is the Euler totient function returning the number of integers k
less than n relatively prime to n
=⇒ gcd(k, n) = 1, k < n

• Note that for a prime number p,

ϕ(p) = p− 1

• Then,

ϕ(n) = ϕ(p) · ϕ(q)
= (p− 1) · (q − 1)



More Proof

• d is relatively prime to ϕ(n) =⇒ d has a multiplicative inverse
mod ϕ(n)

• Consider D(E(m)) and E(D(m))

D(E(m)) ≡ (E(m))d ≡ (me)d ≡ me·d mod n

E(D(m)) ≡ (D(m))e ≡ (md)e ≡ me·d mod n

• Then,

e · d ≡ 1 mod ϕ(n) =⇒ me·d ≡ mk·ϕ(n)+1 mod n



Even More Proof
• For any integer a which is relatively prime to b,

aϕ(b) ≡ 1 mod b.

• So, as p− 1 and q − 1 divide ϕ(n)

mp−1 ≡ 1 mod p =⇒ mk·ϕ(n)+1 = m mod p

mq−1 ≡ 1 mod q =⇒ mk·ϕ(n)+1 = m mod q

• These equations yield that for all m (as they are trivially true for
m ≡ 0 mod p),

me·d ≡ mk·ϕ(n)+1 = m mod n



Security

• Security relies on the difficulty of factoring n

▶ About 200 digits long and 3.8× 109 years to factor by 1977 standards

▶ Typically a few hundred digits now

▶ If we were to know p and q, we could perhaps find d from e

• Computing ϕ(n) would allow us to find d as the multiplicative
inverse of e mod ϕ(n)

• Finding ϕ(n) or determining d otherwise is at least as hard as
factoring n

• If only there was some way to factor n in polynomial time...



Section 4

Conclusion



Conclusion

• RSA is very cool

• Average Passover with too much wine moment (this is supposedly
how Rivest came up with this idea)



Questions?



The era of electronic mail may soon be upon us.

— Rivest, Shamir, and Adleman (1977)

[SA77]
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