Shor’s Algorithm

Andrey Vlasov

Outline

The RSA problem

Shor’s algorithm

Implementing the algorithm

So why isn’t RSA broken?

Section 1

The RSA problem

The RSA problem

e Given the public keys NV and e, and the publicly transmitted
ciphertext C'= M*¢ (mod N), find the original message M.

e Currently an open problem, but it’s believed that factoring N is the
best approach.

e Factoring N will also give us the private key d, so we can decode any
messages sent with this key pair.

® Thus, our problem becomes: Given a semiprime N = pq, find the
prime factors p and ¢ of N.

2

Section 2

Shor’s algorithm

A definition

Let a and N be integers such that a is coprime to N.

The order of a (mod N) is the smallest positive integer r such that
a” =1 (mod N).

By Euler’s Theorem, a®WN) =1 (mod N). Thus, r|¢(N).

In Shor’s algorithm, the problem of factoring N is replaced with the
problem of finding r.

Step 1: RNG

¢ Pick a random number a with 1 < a < N, and calculate ged(a, V).

e If ged(a, N) # 1, we got really lucky. Since N has only two factors,
p = ged(a, N) and ¢ = N/p.

e If ged(a, N) = 1, we move on to step 2.

Step 2: Order-Finding

¢ Find the multiplicative order of a (mod N) and label it r.
° ¢" =1 (mod N) = Nl|(a" —1) = Nl|(az —1)(az +1)
e [f r is odd, we can’t use this formula, so we go back to step 1.

e It’s impossible that N|(aZ — 1), because then az =1 (mod N), but
the order of a (mod N) is r > .

e Ideally, N shares a factor with (aZ — 1) that’s less than N.

Step 3: Factor

e Compute g = ged(N, a2 —1).

o If g=1, then N|(aZ + 1), which tells us nothing about the factors of
N. So, we go back to step 1.

e If g > 1, then g is one of the prime factors of N, and the other factor
is N/g.

¢ In his original paper, Shor proved that the probability of the
algorithm working, given a random a, is at least % The exact
probability is an open problem!

Section 3

Implementing the algorithm

Classical part

® A classical computer is used for steps 1 and 3, because it can
calculate the ged of two numbers very quickly.

e In fact, this calculation never needs more steps than 5 times the
number of digits!

Proof of gcd complexity

e (Claim: Worst-case for Euclidean algorithm is two Fibonacci numbers

® More specifically, if the algorithm requires N steps to find ged(a, b)
with @ > b, then a > Fyy9 and b > F41

® Base case: N = 1. The smallest pairisa=2=F3andb=1=F,
¢ Inductive step: Assume claim is true for all N < K — 1

e The first step in an algorithm with K steps is a = gb + r. Consider
the pair b and r (b > r), which takes K — 1 steps

¢ By the inductive hypothesis, b > Fx 41 and r > Fg
*a=qb+r>b+r>Fgi1+ Fx = Fgio

Proof of gcd complexity

* A property of the golden ratio: ¢? = ¢ + 1
* This gives a property of Fibonacci numbers: ¢V = ¢Fn + Fn_1
° ¢V = ¢FN + Fn_1 < ¢FN + Fy = (¢ + 1)Fy = ¢*Fy

o pN"2 < Fy

Proof of gcd complexity

e If the Euclidean algorithm takes N — 1 steps, then b > Fy > ¢N 2

° N —2<log,(b) and log;y(¢) > 1, so

N -2
5 < logy(¢) log,(b) = logy((b)
N -1 S 1+ 510g10(b) < 510g10(b)

e Time complexity is O(log(b)) - only depends on the smaller number!

Quantum part

Finding the order of a number is hard for classical computers.

The best known algorithm (repeated squaring) is subexponential.

So, we plug the output from step 1 into a quantum computer.

The quantum circuit complexity is O(n3) - much better!

Section 4

So why isn’t RSA broken?

So why isn’t RSA broken?

e Shor’s algorithm needs perfect qubits, with no errors.

® In real quantum systems, errors are really hard to correct.
(see meetings 3 and 4 from Fall ’23)

¢ Order-finding algorithm requires 2n + 3 qubits for an n-bit number.
e For 2048-bit RSA, would need 4,099 perfect qubits.
e Current best: IBM’s Condor with 1,121 noisy qubits.

2

Questions?

Relevant xkcd

A CRYPTO NERD'S
| MAGINATION ¢

HIS LAPTDP'S ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
CLUSTER To CRACK \T.

NO GooD! TS
U096 -BIT R‘&m

E\'IL PLHN
1S FOILED! ™~

WHAT \WOULD
| ACTUALLY HAPPEN:

HIS LAPTOP'S

DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEJ.lS U5 THE. PASSWORD.,

GOT IT,

“R

Bibliography

@ Peter Shor.

Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer.

https://arxiv.org/pdf/quant-ph/9508027.pdf, 1996.

@ Thomas Wong.
Introduction to Classical and Quantum Computing.

https://www.thomaswong.net/
introduction-to-classical-and-quantum-computing-1e3p.pdf,
2022.

https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e3p.pdf
https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e3p.pdf

	The RSA problem
	Shor's algorithm
	Implementing the algorithm
	So why isn't RSA broken?

