Estimates in Analytical Number Theory

Saurav Chittal

The use of bigO notation in Analytic number theory

- Presumably, You've seen the BigO notation in your CS classes. They are generally used to notify the speed or the size of a program
- For example, BFS takes $\mathrm{O}(\mathrm{V}+\mathrm{E})$ time and hashing algorithms like maps generally take $O(n)$ space.
- Similar ideas are used in Analytical Number theory as well. The BigO is used to usually indicate the size of the error.
- It is very useful too, since you can pull out the bigO out of integrals and limits, more useful that other estimates such as smallO. $\int O(\log x) d x=O\left(\int \log x d x\right)$

Some examples

The Prime Number Theorem is equivalent to the statement:

$$
\left.\pi(x)=\frac{x}{\log (x)}+o\left(\frac{x}{\log (x)}\right)\right)
$$

Where $\pi(x)$ is the number of prime numbers less than or equal to x .
Knowing

$$
L i(x)=\int_{2}^{x} \frac{1}{\log (t)} d t
$$

the current best known estimate is

$$
\pi(x)=L i(x)+O\left(x \exp \left\{-(\log (x))^{\alpha}\right\}\right) ; \alpha \in \mathbf{R}, \alpha<\frac{3}{5}
$$

Finally, the Riemann Hypothesis is equivalent to:

$$
\pi(x)=\operatorname{Li}(x)+O\left(x^{\frac{1}{2}+\epsilon}\right) ; \epsilon>0
$$

Manipulation with BigO notation

Proof of Sterling Formula

Theorem
$\mathrm{S}(\mathrm{N})=\sum_{n \leq N} \log (n)=N(\log (N)-1)+\frac{\log (N)}{2}+c+O\left(\frac{1}{N}\right)$

Proof

1. We will use special case of Euler's Summation Formula here

$$
\sum_{n \leq x} f(n)=\int_{1}^{x} f(t) d t+\int_{1}^{x}\{t\} f^{\prime}(t) d t-\{x\} f(x)+f(1)
$$

Here $\{x\}$ indicates the fractional part of x , and $f^{\prime}(x)$ indicates the derivative of $f(x)$. There isn't enough time for a proof, so assume this formula exists.
2. Use Euler's Summation formula but with $f(x)=\log (x)$, we note that $\{N\}=0, f(1)=0$. Hence $S(N)=I_{1}(N)+I_{2}(N)$

Manipulation with BigO notation

3. $I_{1}(N)=\int_{1}^{N} \log (t) d t=N \log (N)-N+1$
4. $I_{2}(N)=\int_{1}^{N} \frac{\{t\}}{t} d t=\int_{1}^{N} \frac{1}{2 t} d t+\int_{1}^{N} \frac{\{t\}-\frac{1}{2}}{t} d t=\frac{\log (N)}{2}+I_{3}(N)$

Combining these formulas gives us:

$$
S(N)=N \log (N)-N+1-\frac{\log (N)}{2}+I_{3}(N)
$$

Now, we use integration by parts on $I_{3}(N)$

$$
I_{3}(N)=\left.\frac{R(t)}{t}\right|_{1} ^{N}+\int_{1}^{N} \frac{R(t)}{t^{2}} d t
$$

where $R(N)=\int_{1}^{N}\{t\}-\frac{1}{2} d t$

Manipulation with BigO notation

We note the following:

- $\rho(t)=\{t\}-\frac{1}{2}$ is periodic with period 1 and $|\rho(t)| \leq \frac{1}{2}$
- $\int_{k}^{k+1} \rho(t) d t=0$ for any integer k , because of the way it's structured.
- Finally, $|R(t)| \leq \frac{1}{2}$ for any t

Hence we have that $I_{3}(N)=\int_{1}^{N} \frac{R(t)}{t^{2}} d t$. This specific integral now converges as $N \rightarrow \infty$, since $\frac{|R(t)|}{t^{2}} \leq \frac{\left(\frac{1}{2}\right)}{t^{2}}$

Therefore

$$
I_{3}(N)=I-\int_{N}^{\infty} \frac{R(t)}{t^{2}} d t=I-O\left(\int_{N}^{\infty} \frac{1}{t^{2}} d t\right)=I-O\left(\frac{1}{N}\right)
$$

where $I=\int_{1}^{\infty} \frac{R(t)}{t^{2}} d t$, a constant.

Manipulation with BigO notation

The end is near
Recapping what we've done so far, we have shown that:

$$
S(N)=\sum_{n \leq N} \log (n)=N \log (N)-N+C-\frac{\log (N)}{2}-O\left(\frac{1}{N}\right)
$$

However, we note that $n!=\exp \left\{\sum_{k \leq n} \log (k)\right\}$, exponentiating the formula that we just derived we get:

$$
n!=n^{n} e^{-n} \sqrt{n} e^{C}\left(1+O\left(\frac{1}{N}\right)\right)
$$

due to the taylor series of exponentials.
Note: We can accurately get the constant value to be $\sqrt{2 \pi}$, but that is much more difficult, and will require a course in number theory

Questions?

