Random Walks and Markov Chains

Alex Jin

Random Walks

More Random Walks

More Random Walks

Section 1

Markov Chains

Definitions

- A stochastic process is a sequence of random variables $\left[X_{0}, X_{1}, X_{2}, X_{3}, \ldots\right]$ where $X_{i} \in \mathbb{Z}$.
- If $X_{t}=i$, we say the process has value i at time t.
- A Markov Chain is a random process with the Markov property:

$$
\begin{gathered}
\mathbb{P}\left(X_{t+1}=i_{t+1} \mid X_{t}=i_{t}, X_{t-1}=i_{t-1}, \ldots, X_{0}=i_{0}\right) \\
=\mathbb{P}\left(X_{t+1}=i_{t+1} \mid X_{t}=i_{t}\right)
\end{gathered}
$$

Transition Probabilities

- By the Markov property, the transition probabilities between any two states can be expressed as a single value:

$$
p_{i j}=\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i\right)
$$

Theorem

A random process $\left(X_{t}\right)_{t \geq 0}$ is Markov if and only if $\forall i_{0}, \ldots, i_{n}$:

$$
\mathbb{P}\left(X_{1}=i_{1}, \ldots, X_{n}=i_{n} \mid X_{0}=i_{0}\right)=p_{i_{0} i_{1}} p_{i_{1} i_{2}} \ldots p_{i_{n-1} i_{n}}
$$

Transition Matrix

The transition matrix of a Markov Chain contains all transition probabilities:

$$
\left(\begin{array}{cccc}
p_{00} & p_{01} & p_{02} & \ldots \\
p_{10} & p_{11} & p_{12} & \ldots \\
p_{20} & p_{21} & p_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example: Random Walk on Number Line

Consider a symmetric random walk on the number line:

$$
\left(\right)
$$

Recurrence and Transience

- We say state i is recurrent if, starting at i,

$$
\mathbb{P}(\text { chain visits } i \text { infinitely many times })=1
$$

- We say state i is transient if, starting at i,

$$
\mathbb{P}(\text { chain visits } i \text { infinitely many times })=0
$$

https://illinois.zoom.us/j/84778016612?pwd=b0FDVWwxdDlMMjR4TzNqamo0ZGZK
Ex. In the chain $\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$, state 0 is transient, state 1 is recurrent.

Recurrence and Transience

Theorem

For a Markov Chain starting at i,

1. $\mathbb{P}($ chain eventually returns to $i)=1 \Leftrightarrow$

$$
i \text { is recurrent \& } \mathbb{E}[\text { number of visits to } i]=\infty
$$

2. $\mathbb{P}($ chain eventually returns to $i)<1 \Leftrightarrow$

$$
i \text { is transient \& } \mathbb{E}[\text { number of visits to } i]<\infty
$$

Goal: prove $(0,0)$ is a recurrent state in a random walk on \mathbb{Z}^{2}, and $(0,0,0)$ is a transient state in a random walk on \mathbb{Z}^{3}.

Section 2
A Proof

Recurrence of 2-D Walk

Want to show: $\mathbb{E}[$ number of visits to $(0,0)]=\infty$.

Proof

1. Note that $\mathbb{E}[$ number of visits to $(0,0)]=\sum_{t=0}^{\infty} p_{00}^{(t)}$;
2. Since returning to the origin can only be accomplished with an even number of steps, we will only consider the even terms.
3. Then, $p_{00}^{2 t}=\frac{1}{4^{t}} \sum_{i=0}^{t} \frac{(2 t)!}{i!!!(t-i)!(t-i)!}=\frac{1}{4^{2 t}}\binom{2 t}{t} \sum_{i=0}^{t} \frac{n!n!}{i!!(t-i)!(t-i)!}=$ $\frac{1}{4^{2 t}}\binom{2 t}{t} \sum_{i=0}^{t}\binom{t}{i}^{2}=\frac{1}{4^{2 t}}\binom{2 t}{t}^{2} \sim \frac{1}{\pi t}$ by Stirling's approximation.
4. Since $\sum p_{00}^{(t)} \sim \sum \frac{1}{\pi t}$, we may conclude that both series diverge, hence $(0,0)$ is recurrent.

Transience of 3-D Walk

Want to show: $\mathbb{E}[$ number of visits to $(0,0,0)]<\infty$.

Proof

1. Note that $\mathbb{E}[$ number of visits to $(0,0,0)]=\sum_{t=0}^{\infty} p_{00}^{(t)}$;
2. Since returning to the origin can only be accomplished with an even number of steps, we will only consider the even terms.
3. Then, $p_{00}^{2 t}=\frac{1}{6^{2 t}} \sum_{i+j+k=t} \frac{(2 t)!}{(i!j!k!)^{2}}=\frac{1}{6^{2 t}}\binom{2 t}{t} \sum_{i=0}^{t}\binom{t}{i, j, k}^{2} \leq$ $\frac{1}{6^{2 t}}\binom{2 n}{n} \sum_{i=0}^{t}\binom{n}{n / 3, n / 3, n / 3}^{2}=\frac{1}{2^{2 t}}\binom{2 n}{n}\binom{n}{n / 3, n / 3, n / 3} \frac{1}{3^{t}} \sim \frac{1}{2}\left(\frac{3}{\pi t}\right)^{3 / 2}$
4. Since $\sum p_{00}^{(t)} \leq \sum \frac{1}{2}\left(\frac{3}{\pi t}\right)^{3 / 2}$, we may conclude that both series converge, hence $(0,0,0)$ is recurrent.

Questions?

Acknowledgement

The material of this talk was adapted from MATH466 taught by Prof. Renming Song, with the proof taken from [Nor97].

A drunk man will find his way home, but a drunk bird may get lost forever.

- Shizuo Kakutani

Bibliography I

居 J. R. Norris.

Markov Chains.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1997

