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Markov Chains



Definitions

• A stochastic process is a sequence of random variables
[X0, X1, X2, X3, . . . ] where Xi ∈ Z.

• If Xt = i, we say the process has value i at time t.

• A Markov Chain is a random process with the Markov property:

P(Xt+1 = it+1 | Xt = it, Xt−1 = it−1, . . . , X0 = i0)

= P(Xt+1 = it+1 | Xt = it)



Transition Probabilities

• By the Markov property, the transition probabilities between any
two states can be expressed as a single value:

pij = P(Xt+1 = j | Xt = i)

Theorem
A random process (Xt)t≥0 is Markov if and only if ∀i0, . . . , in:

P(X1 = i1, . . . , Xn = in | X0 = i0) = pi0i1pi1i2 . . . pin−1in



Transition Matrix

The transition matrix of a Markov Chain contains all transition
probabilities:


p00 p01 p02 . . .
p10 p11 p12 . . .
p20 p21 p22 . . .
...

...
...

. . .





Example: Random Walk on Number Line

Consider a symmetric random walk on the number line:



. . . . . .
0 1/2 0 0

. . . 1/2 0 1/2 0 . . .

. . . 0 1/2 0 1/2 . . .
0 0 1/2 0

. . . . . .





Recurrence and Transience

• We say state i is recurrent if, starting at i,

P(chain visits i infinitely many times) = 1

• We say state i is transient if, starting at i,

P(chain visits i infinitely many times) = 0

https://illinois.zoom.us/j/84778016612?pwd=b0FDVWwxdDlMMjR4TzNqamo0ZGZKQT09

Ex. In the chain
(
0 1
0 1

)
, state 0 is transient, state 1 is recurrent.



Recurrence and Transience

Theorem
For a Markov Chain starting at i,

1. P(chain eventually returns to i) = 1 ⇔

i is recurrent & E[number of visits to i] = ∞,

2. P(chain eventually returns to i) < 1 ⇔

i is transient & E[number of visits to i] < ∞.

Goal: prove (0, 0) is a recurrent state in a random walk on Z2, and
(0, 0, 0) is a transient state in a random walk on Z3.



Section 2

A Proof



Recurrence of 2-D Walk

Want to show: E[number of visits to (0,0)] = ∞.

Proof
1. Note that E[number of visits to (0,0)] =

∑∞
t=0 p

(t)
00 ;

2. Since returning to the origin can only be accomplished with an even
number of steps, we will only consider the even terms.

3. Then, p2t00 =
1
4t
∑t

i=0
(2t)!

i!i!(t−i)!(t−i)! =
1
42t

(
2t
t

)∑t
i=0

n!n!
i!i!(t−i)!(t−i)! =

1
42t

(
2t
t

)∑t
i=0

(
t
i

)2
= 1

42t

(
2t
t

)2 ∼ 1
πt by Stirling’s approximation.

4. Since
∑

p
(t)
00 ∼

∑ 1
πt , we may conclude that both series diverge,

hence (0,0) is recurrent.



Transience of 3-D Walk

Want to show: E[number of visits to (0,0,0)] < ∞.

Proof
1. Note that E[number of visits to (0,0,0)] =

∑∞
t=0 p

(t)
00 ;

2. Since returning to the origin can only be accomplished with an even
number of steps, we will only consider the even terms.

3. Then, p2t00 =
1
62t

∑
i+j+k=t

(2t)!
(i!j!k!)2

= 1
62t

(
2t
t

)∑t
i=0

(
t

i,j,k

)2 ≤
1
62t

(
2n
n

)∑t
i=0

(
n

n/3,n/3,n/3

)2
= 1

22t

(
2n
n

)(
n

n/3,n/3,n/3

)
1
3t ∼ 1

2

(
3
πt

)3/2
4. Since

∑
p
(t)
00 ≤

∑ 1
2

(
3
πt

)3/2, we may conclude that both series
converge, hence (0,0,0) is recurrent.



Questions?
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A drunk man will find his way home, but a drunk bird may get lost forever.

— Shizuo Kakutani
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