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Sequence Stmilarity



Examples

Sequence Similarity

Which pair of sequences are the closest?

S =AAAAA Sy = AGAGA S3 = GGAAA
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Orthology Detection
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Examples

Orthology Detection
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Examples
Phylogeny Estimation

SegA GARFIELD THE LAST FAT CAT
SeqB GARFIELD THE FAST CAT

SeqC GARFIELD THE VERY FAST CAT

SegqD THE FAT CAT E
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Multiple Sequence Alignment

Problem (Multiple Sequence Alignment)

Given a set of sequences S1,...,S,, and a scoring function d, find a
multiple sequence alignment &/ = (a;5)1<i<n Minimizing

Z d(alj, 500y anj)
J
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Problem (Multiple Sequence Alignment)

Given a set of sequences S1,...,.S,, and a scoring function d, find a
multiple sequence alignment o/ = (a;5)1<i<n Minimizing
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i) = {—i—oo if number unique characters is more than 1

1 otherwise
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Multiple Sequence Alignment

Problem (Multiple Sequence Alignment)

Given a set of sequences S1,...,.S,, and a scoring function d, find a
multiple sequence alignment & = (a;5)1<i<n Minimizing

Z d(aij, ..., Gnj)
J

d(-) = # dashes + # unique — 1



Pariwise Alignments

Edit Distance
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Alignment Graphs

Definition (Alignment Graph)

Given a set of sequences Sq, ..., Sy, and a scoring function d, and a set of
parrwise alignments Ay, ..., Ag, construct G = (V, E, <), where
1. For each sequence, for each site s;;, create a vertex
2. For each alignment A;, for each homology s;j, sk, add weight
d(sij, k1) to the edge
3. For each pair site s;; and s;;» where j > j, add s;5, 5,5 to <



Alignment Graphs
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Alignment Graphs
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Fig.1. (a) An alignment graph on three sequences. We use the convention of drawing
the characters in a sequence horizontally left to right. (b) Relation <* on its connected

components.



Alignment Graphs

Definition (Trace)

A trace of an alignment graph G = (V, E, <) is a subset of the T'C E
where G* = (V, T, <*) is acyclic.



Maximum Weight Trace

Problem (Maximum Weight Trace (MWT))

Given an alignment graph G = (V, E, <), find the trace T that mazimizes



Maximum Weight Trace

Theorem (Kececioglu’93)
Mazimum Weight Trace is NP-Hard

Consider an instance G = (V, E) and integer k of Feedback Set.
1. For every vertex v, create sequence S, = v
2. For every edge u — v, create sequence Sy, = uv

3. Create pairwise alignments
Su |u — Sy | — v
Suv u v Suv u v
4. Check if MWT is at least 2k. 2 :
L]
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Maximum Weight Trace

Let D(x1,...,x,) denote maximum weight trace over prefizes S;[1 : x;).
Then,

D(Z) = max {D(Z - b)+ d(S?)}
be2n

Thus, MWT can be solved in O((2k)"poly(n)).



Maximum Weight Trace
Let D(x1,...,xy,) denote maximum weight trace over prefizes S;[1 : x;).
Then,

D(Z) = max {D(Z - b)+d(S?)}
b el2]™

Thus, MWT can be solved in O((2k)"poly(n)).
From Fa’24 CS 374 homework 14, this can be improved to O(nk™poly(n)).



Maximum Weight Trace

Let D(x1,...,x,) denote maximum weight trace over prefizes S;[1 : x;).
Then,

D(Z) = max {D(Z - b)+ d(S?)}
be2n

Thus, MWT can be solved in O((2k)"poly(n)).
Using the Branch-and-Bound paradigm, this can be fast.



T-COFFEE

1. Aggregate pairwise alignments through triples
2. Calculate new pairwise distances
3. Compute guide trees

4. Progressively align using guide tree



T-COFFEE

b)Primary Library
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T-COFFEE

¢)Extended Library for seql and seq2
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T-COFFEE

a)Regular Progressive Alignment Strategy
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MAGUS

1. Create alignment graph from backbone alignments
2. Cluster with Markov Clustering (MCL)

3. Break all clusters that violate ordering



Clusters have high edge connectivity.
A random walk is likely to stay
within the cluster.

Figure 3. Successive stages of flow simulation by the MCL process.



MAGUS

Figure 3. Successive stages of flow simulation by the MCI. process.

Clusters have high edge connectivity.
A random walk is likely to stay
within the cluster.

Markov Clustering Algorithm
1. Expansion (random walk)
2. Inflation (amplify probabilities)
3. Repeat
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Results
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Results

1. T-Coffee (Regressive) is the best

2. Consistency based methods are very good (MAGUS, T-Coffee,
Muscle)

3. Single-stage aligners are bad (Kalign, ClustalOmega, ...)
4. Exception for FAMSA



Questions

1. How can we encode genome events into the alignment graph?

2. Can T-COFFEE perform better if we give it multiple sequence
alignments (instead of pairwise) as input?

3. Do other clustering algorithms (beyond MCL) cluster the alignment
graph better in MAGUS?

2
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