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Section 1

Introduction: 0 < µ < 3



Definition

A 1D map can be expressed in the form of xn+1 = f(xn).

Definition
The logistic map is a family of functions
fµ : R → R, x 7→ µx(1− x), µ ∈ R.

Specifically, we will investigate µ > 0.



Immediate Observations

• Recall that fixed point x∗ is stable/attracting if |f ′(x∗)| < 1 and
unstable/repelling if |f ′(x∗)| > 1. Bifurcations usually occur at
the marginally stable point of |f ′(x∗)| = 1.

• The initial fixed points for small µ are:
x = µx(1− x) → x∗ = 0, 1− 1/µ. f ′

µ = µ(1− 2x), so x∗ = 0 is stable
for 0 < µ < 1, and x∗ = 1− 1/µ is stable for 1 < µ < 3.



The 1 < µ < 3 Case

Proposition
Suppose µ > 1. If x < 0 or x > 1, then lim

n→∞
fn
µ (x) = −∞.

Proof
Note that if x > 1, fµ(x) = µx(1− x) < 0, reducing to the x < 0 case.
Note that x > fµ(x), so (fn

µ (x))n forms a decreasing sequence. We now
show that this sequence cannot converge. Suppose for some x < 0,
fn
µ (x) → p for some p. Then fn+1

µ (x) → p. But by continuity of f ,
fn+1
µ (x) → fµ(p) < p. Contradiction.



The 1 < µ < 3 Case (cont.)
Proposition
If 0 < x < 1, then lim

n→∞
fn
µ (x) = x∗, where x∗ = 1− 1/µ (as expected,

because x∗ is an attracting fixed point.

Proof (draw a picture)
We split into 3 cases: 1 < µ < 2, µ = 2, 2 < µ < 3. One can check for the
second case explicitly. For 1 < µ < 2, x∗ < 1/2, and fµ(x) < x for
0 < x < 1/2. Thus, for 0 < x < x∗, fµ(x) > x, and (fn

µ (x))n converges to
x∗. Similarly, for x∗ < x < 1/2, fµ(x) < x, and (fn

µ (x))n converges to x∗.
Note f((1/2, 1)) = (0, 1/2), and 1/2 < x < 1 is proved as well. For
2 < µ < 3, x∗ > 1/2. Define x′∗ = 1/µ (reflecting x∗ across x = 1/2). For
0 < x < x′∗, fµ(x) > x. For x′∗ < x < x∗, although fµ(x) > x∗, note that
x < f2

µ(x) < x∗ (can be shown by taking derivative). Thus, we have
proved for 0 < x < x∗. For x∗ < x < 1, note that f((x∗, 1)) = (0, x∗),
hence proved.



The 0 < µ < 1 Case

• We have similar results.

• Now x∗ = 1− 1/µ < 0.

• Specifically, for x < x∗ or x > 1/µ, lim
n→∞

fn
µ (x) = −∞, and for

x∗ < x < 1/µ, lim
n→∞

fn
µ (x) = 0, as expected, because 0 is an

attracting fixed point.



For µ > 3...

• Period doubling for µ < 3.56995.

• Most values of µ ∈ (3.56995, 4) exhibit chaotic behavior, but there
are still certain isolated ranges of µ that show non-chaotic behavior;
these are sometimes called islands of stability (Wikipedia).

• All µ > 4 exhibit chaotic behavior.



Section 2

Bifurcations: 3 < µ < µ∞



Bifurcation

• Let λ be a external parameter. Let f : X → X be a function
dependent on λ. Varying λ generates a family of functions, denoted
fλ, where each function in the family uses a different value of λ.

• As we change f by varying λ, there are certain points in the family
where the qualitative behavior of the function changes. These
changes are called bifurcations, and the values of the parameter λ
where these changes occur are called bifurcation points.



Period Doubling Bifurcation: Definition

Definition
A family of functions fλ undergoes a period doubling bifurcation at
λ = λ0 if ∃ open interval I, ϵ > 0 s.t.:

1. ∀λ ∈ [λ0 − ϵ, λ0 + ϵ], ∃! fixed point pλ ∈ I for fλ.
2. ∀λ ∈ (λ0 − ϵ, λ0], fλ has no cycles of period 2 in I and pλ is

attracting (resp. repelling).
3. ∀λ ∈ (λ0, λ0 + ϵ), ∃! 2-cycle q1λ, q

2
λ in I that is attracting (resp.

repelling). Meantime, fixed point pλ is repelling (resp. attracting).
4. As λ → λ0, qiλ → pλ0 .



First Period Doubling Bifurcation

• At µ = 3, x∗ = 1− 1/3 = 2/3, and
f ′
µ(x∗) = µ(1− 2x∗) = 3(1− 2 · 2/3) = −1, which is a marginally

stable point, causing the first bifurcation.

• The 2 periodic points (denoted x0 and x1) after the bifurcation must
both satisfy x = fµ(fµ(x)) = f2

µ(x), which is a quartic equation.
Note that 2 roots are the initial fixed points x∗ = 0, 1− 1/µ, so
factor them out to get x1, x2 =

1
2µ(µ+ 1±

√
(µ+ 1)(µ− 3)).



Subsequent Period Doubling Bifurcations

• To find the value of µ at which a bifurcation occurs (going from
period-2n−1 to period-2n, we use (f2n−1

µ )′(xi) = −1 for all fixed
points xi of f2n−1

µ .

• Using the chain rule,
(f2n−1

µ )′(x0) = f ′
µ(f

2n−1−1
µ (x0))f

′
µ(f

2n−1−2
µ (x0)) · · · f ′

µ(fµ(x0))f
′
µ(x0)

= f ′
µ(x2n−1−1)f

′
µ(x2n−2−2) · · · f ′

µ(x1)f
′
µ(x0) =

2n−1−1∏
i=0

f ′
µ(xi) =

2n−1−1∏
i=0

µ(1− 2xi) = −1.

• We know where the fixed points xi are for period-2n−1, so we can
solve the equation as a function in µ.



Feigenbaum Constant

• It turns out that if we take the ratio of the space between
consecutive period doubling bifurcation points of the logistic map, we
approach a value known as the Feigenbaum constant δ ≈ 4.669...
(A006890 in OEIS).

• Let qn be the value of q of the n-th bifurcation. Let δn := qn+1−qn
qn+2−qn+1

.
Then δ := lim

n→∞
δn.

• As expected from geometric series, qn converges. We denote the limit
as µ∞ ≈ 3.56994... (A098587 in OEIS).

• This constant is universal for all 1D maps with a single locally
quadratic maximum.



Renormalization

Figure: f2
µ(x) for increasing µ, 2 < µ < 4.



Renormalization (cont.)

Definition
Let pµ be the periodic point of period 2 of fµ, and let p∗µ be the point s.t.
f(p∗µ) = pµ. Lµ(x) :=

1
p∗µ−pµ

(x− pµ). The renormalization of fµ is
defined as (Rfµ)(x) := Lµ ◦ f2

µ ◦ L−1(x).

• Rfµ provides a magnified view of the local behavior.

• Observation: if x is a periodic point of period 2 of fµ, then L(x) is a
fixed point of (Rfµ)(x).

• Repeated renormalization leads to a sequence of bifurcation points
that we expected.



Section 3

Symbolic Dynamics



An Alternative Metric Space

Definition
Let Σ2 := {s = (s0s1 · · · ) : sj = 0 or 1∀j} be the set of all bitstrings of

infinite length. Let ∀s, t ∈ Σ2, d(s, t) :=

∞∑
i=0

|si − ti|
2i

.

Proposition
d is a metric on Σ2.

Observation: s, t ∈ Σ2. If si = ti∀i, 0 ≤ i ≤ n, then d(s, t) ≤ 2−n. If
d(s, t) < 2−n, then si = ti∀i, 0 ≤ i ≤ n.



The Shift Map σ

Definition
σ : Σ2 → Σ2, σ(s0s1s2 · · · ) = (s1s2s3 · · · ).

Proposition
σ continuous.



Properties of σ

Proposition
1. Number of periodic points of period n is 2n.
2. Periodic points are dense in Σ2.
3. There exists dense orbit in Σ2.

Corollary
σ is chaotic in Σ2.



Proof of Proposition

Proof
1. A periodic point of period n is in the form of

s0 · · · sn−1s0 · · · sn−1 · · · , so there are 2n such periodic points.
2. We want ∀t ∈ Σ2, ϵ > 0∃ periodic point s : d(s, t) < ϵ. Note

∃M : si = ti∀0 ≤ i ≤ M → d(s, t) < ϵ. Take
s = (t0 · · · tM t0 · · · tM · · · ).

3. We want ∃s ∈ Σ2 : ∀t ∈ Σ2, ϵ > 0∃N : d(σN (s), t) < ϵ. Note again
∀ϵ∃M : σN (s) = ti∀0 ≤ i ≤ M → d(σN (s), t) < ϵ. Denote sM to be
a concatenation of an enumeration of all bitstrings of length M .
Take s = concatenation of all sM∀M ∈ N.



Section 4

Topological Conjugacy: µ > 4



The Set Λ

Definition
Let An = {x ∈ [0, 1] : fn

µ (x) ∈ [0, 1], fn+1
µ (x) /∈ [0, 1]}. Define

Λ := [0, 1]−
∞⋃
n=0

An.

Definition
A set S is a Cantor set if it is closed, totally disconnected (contains no
intervals as connected subsets), and perfect (every point in S is an
accumulation point of all other points in S).

Proposition
Λ is a Cantor set for µ > 4.



Proof of Cantor-ness

Proof
• Closed: we start with a closed interval. At every iteration, an open

interval is removed (equivalent of taking the intersection with a
closed interval). Intersection of closed intervals are closed.

• Totally disconnected: we shall see this shortly.
• Perfect: suppose not. Then there exists isolated point p ∈ Λ. Then

exists some i s.t. ∀x ∈ Bo
ϵ (p), f

i
µ(x) < 0. Thus, f i

µ is maximized at p,
so (f i

µ)
′(p) = 0. This implies that f ′(f j

µ(p)) = 0 for some j < i. But
this means f j

µ(p) = 1/2, which is a contradiction because
f j+1
µ (p) /∈ Λ.



Definitions

Definition
A function f : X → Y between two spaces X,Y is a homeomorphism if

1. is a bijection
2. is continuous
3. has continuous inverse

Definition
Let f : X → X, g : Y → Y . Then f, g are topologically conjugate if
there exists homeomorphism h : X → Y s.t. h ◦ f = g ◦ h.



A Preliminary Theorem

Definition
Let S : Λ → Σ2 be the following function: x ∈ Λ, S(x) = s0s1 · · · , where
si = 0 if f i

µ(x) ∈ I0 and si = 1 if f i
µ(x) ∈ I1, where

I0 = {x ∈ [0, 1/2] : fµ(x) ≤ 1} and I1 = {x ∈ [1/2, 1] : fµ(x) ≤ 1}.

Theorem
If µ > 2 +

√
5, then S : Λ → Σ2 is a homeomorphism.



Continuity of S

Proof
We will use the sequential criterion of continuity. Consider arbitrary
sequence (xn) ⊂ Λ with xn → x ∈ Λ. We want S(xn) → S(x) ∈ Σ2, i.e.,
∀ϵ > 0, ∃N : n > N → d(S(xn), S(x)) < ϵ. Note that
d(S(xn), S(x)) < ϵ ↔ ∃M : (S(xn))i = (S(x))i∀i ≤ M (take M s.t.
2−M < ϵ). This means that ∀i ≤ M , f i

µ(xn) and f i
µ(x) agree on whether

they are in I0 or I1. Let Ji be the interval (either I0 or I1) that f i
µ(x) is

in. For each i, 0 ≤ i ≤ M , let us pick
ϵi > 0 : ∀y : |y − f i

µ(x)| < ϵi, f
i
µ(xn) ∈ Ji. In other words, pick some

ϵi > 0 s.t. f i
µ(xn) and f i

µ(x) agree on the interval. Note that f i
µ

continuous everywhere ∀i. Thus,
∃δi > 0 : |y− x| < δi → |f i

µ(y)− f i
µ(x)| < ϵi. Take δ := min

0≤i≤M
δi. Because

xn → x, ∃N : n > N → |xn − x| < δ. Take this N . ■



Continuity of S−1

Proof
We again use the sequential criterion of continuity. Consider arbitrary
sequence (yn) ⊂ Σ2 with yn → y ∈ Σ2. Define xi := S−1(yi) ∈ Λ∀i and
x := S−1(y); we want xi → x. Suppose not. Then there exists ϵ > 0 and
subsequence (xnk

)k ⊂ (xn)n s.t. ∀k, |xnk
− x| ≥ ϵ. Observe that

µ > 2 +
√
5 → |f ′

µ(x)| > 1∀x ∈ I0 ∪ I1. Then by MVT,
|fµ(xnk

)− fµ(x)| > λ|xnk
− x|, for some λ > 1. This implies

|f i
µ(xnk

)− f i
µ(x)| > λi|xnk

− x| ≥ λiϵ, which is unbounded. Note that
yn → y means that ∀M ∈ N, ∃N : n > N → ∀0 ≤ i ≤ M , f i

µ(xn) and
f i
µ(x) agree on whether they are in I0 or I1. But this is a contradiction,

because for large enough M , ∀N∃n > N s.t.
|fM

µ (xn)− fM
µ (x)| > len(I0) = len(I1). ■



Alternative Proof for S−1

Proof
Note that Λ compact. By the Heine-Borel theorem, boundedness and
totally boundedness are equivalent on Rn. Obviously, Λ is closed and
bounded. Recall that compact is equivalent to closed AND totally
bounded.
Recall from topology that a continuous bijection with compact domain
has continuous inverse. Done!



Bijection
Proof
Injectivity: Suppose S(x) = S(y) for x, y ∈ Λ. Then ∀n ∈ N, fn

µ (x) and
fn
µ (y) agree on whether they are in I0 or I1. Suppose x ≠ y. Then similar

the previous proof, we have |fn
µ (xnk

)− fn
µ (x)| > λn|xnk

− x| ≥ λnϵ.
Contradiction.
Surjectivity: Define Is0s1···sn = {x ∈ Λ : x ∈ Is0 , fµ(x) ∈ Is1 , · · · , fn

µ (x) ∈
Isn} = Is0 ∩ f−1

µ (Is1s2···sn). By induction, Is1s2···sn is closed and
nonempty. By continuity of f , f−1

µ (Is1s2···sn) is closed. Note that Is0
closed, so because intersection of closed sets is closed, Is0s1···sn closed.
Note that f−1

µ (Is1s2···sn) = I0s1s2···sn ∪ I0s1s2···sn , both of which are
nonempty, so Is0s1···sn nonempty. Consider arbitrary

y ∈ Σ2, S(y) = (s0s1 · · · ), we have
∞⋂
n=0

Is0···sn is closed. Moreover, we

know that it only contains 1 element: f−1
µ (y). ■



Topological Conjugacy

Theorem
S ◦ f = σ ◦ S.

Proof
We will show f = S−1 ◦ σ ◦ S. Suppose x ∈ Λ, S(x) = (s0s1 · · · ). Then

S−1 ◦ σ ◦ S(x) = S−1(s1 · · · ) =
∞⋂
n=1

Is1···sn , which is obviously equal to

f(x).



S as Topological Conjugate

• Due to the topological conjugacy between Λ and Σ2 via S, all
dynamics properties on the two spaces area equivalent.

• Specifically, we have periodic points are dense in Λ, and there exists
dense orbit in Λ.

• Thus, we have fµ chaotic in Λ for µ > 2 +
√
5.

• This is actually true for µ > 4, by first taking a homeomorphism
between the logistic map and the tent map, then proving chaos for
the tent map using a topological conjugacy between the tent map
and Σ2.



Questions?
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