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Section 1

Introduction: 0 < p < 3



Definition

A 1D map can be expressed in the form of x,11 = f(zy).

Definition

The logistic map is a family of functions
foR->Raxw— pz(l—z),ueR.

Specifically, we will investigate p > 0.



Immediate Observations

® Recall that fixed point z, is stable/attracting if | f'(z,)| < 1 and
unstable/repelling if | f'(z.)| > 1. Bifurcations usually occur at
the marginally stable point of |f'(z,)| = 1.

¢ The initial fixed points for small p are:
r=pr(l—z) =z =0,1-1/p. f, = p(l —22), so z. = 0 is stable
for0 < p<1,and z, =1—1/p is stable for 1 < pu < 3.
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The 1 < p < 3 Case

Proposition

Suppose > 1. If x <0 or > 1, then lim f/’f(w) = —o0.

n—oo

Proof

Note that if x > 1, fu(x) = pa(1 — ) < 0, reducing to the x < 0 case.
Note that x > f, (), so (f}/(z))n forms a decreasing sequence. We now
show that this sequence cannot converge. Suppose for some x < 0,
fii(x) — p for some p. Then f;}“(x) — p. But by continuity of f,

[}H(x) — fu(p) < p. Contradiction.



The 1 < < 3 Case (cont.
Proposition

If0 <z <1, then lim f/(x) = ., where z. =1 —1/p (as expected,
n—oo

because z, is an attracting fixed point.

Proof (draw a picture)

We split into 3 cases: 1 < < 2, p=2,2 < pu < 3. One can check for the
second case explicitly. For 1 < pu <2, z, <1/2, and fu(x) < x for

0 < <1/2. Thus, for 0 <z < x4, fu(x) >z, and (f}}(x)), converges to
. Similarly, for z. <z <1/2, f.(z) <z, and (f}/(z))n converges to ..
Note f((1/2,1)) = (0,1/2), and 1/2 < & < 1 is proved as well. For

2 < <3,z >1/2. Define 2/, = 1/ (reflecting ., across z = 1/2). For
0 <z <2, fu(r) > . For zi, < x <z, although f,(z) > z,, note that
x < fi(x) < . (can be shown by taking derivative). Thus, we have
proved for 0 < z < z,. For z, < z < 1, note that f((z«, 1)) = (0, x), Z
hence proved.



The 0 < p < 1 Case

¢ We have similar results.

® Nowz, =1—-1/pu<0.

e Specifically, for x < z, or x > 1/p, nh—>Holo [ (x) = —o0, and for
T <x < 1/p, nh_)ngo f.(x) = 0, as expected, because 0 is an

attracting fixed point.



For p > 3...

® Period doubling for p < 3.56995.

® Most values of u € (3.56995,4) exhibit chaotic behavior, but there
are still certain isolated ranges of y that show non-chaotic behavior;
these are sometimes called islands of stability (Wikipedia).

e All p > 4 exhibit chaotic behavior.



Section 2

Bifurcations: 3 < p < fiso



Bifurcation

® Let A be a external parameter. Let f: X — X be a function
dependent on A. Varying A\ generates a family of functions, denoted
fx, where each function in the family uses a different value of .

® As we change f by varying A, there are certain points in the family
where the qualitative behavior of the function changes. These
changes are called bifurcations, and the values of the parameter A
where these changes occur are called bifurcation points.



Period Doubling Bifurcation: Definition

A family of functions f) undergoes a period doubling bifurcation at

=
1.
2.

Ao if 3 open interval I, € > 0 s.t.:

VA € [Ao — €, Ao + €], 3! fixed point py € I for fy.

VA € (Ao — € Aol, f has no cycles of period 2 in I and p) is
attracting (resp. repelling).

VA € (Ao, Ao + €), 3! 2-cycle g3, 43 in I that is attracting (resp.
repelling). Meantime, fixed point p) is repelling (resp. attracting).
As A — Ao, qf\ — Do



First Period Doubling Bifurcation

* At u=3,z,=1-1/3=2/3, and
fu(@e) = p(l = 22,) = 3(1 — 2-2/3) = —1, which is a marginally
stable point, causing the first bifurcation.

¢ The 2 periodic points (denoted xg and x) after the bifurcation must
both satisfy x = f,(fu(z)) = fﬁ(x), which is a quartic equation.
Note that 2 roots are the initial fixed points x, = 0,1 — 1/u, so

factor them out to get x1,z2 = i(u+ 1+ (n+1)(un—3)).



Subsequent Period Doubling Bifurcations

® To find the value of u at which a bifurcation occurs (going from
period-2""! to period-2", we use (fﬁn_l)’(xi) = —1 for all fixed

points x; of f2n "

¢ Using the chain rule,

(F2) (o) = £(f3 21 OV 2 (o)) - f(Fiulwo)) £ (o)

|

= fﬂ($2n—171)f;2(562n—272) fu(ﬂ”l f# o) H f# 7)) =
on—1_1

IT r#(—21z)=-1
=0

* We know where the fixed points z; are for period-2""!, so we can
solve the equation as a function in pu.



Feigenbaum Constant

¢ [t turns out that if we take the ratio of the space between
consecutive period doubling bifurcation points of the logistic map, we
approach a value known as the Feigenbaum constant § ~ 4.6609...
(A006890 in OEIS).

® Let g, be the value of g of the n-th bifurcation. Let §,, := -Zntl—dn_

. - qn+2—qn+1"
Then 6 := lim 6,
n—oo

e As expected from geometric series, g, converges. We denote the limit

as floo ~ 3.56994... (A098587 in OEIS).

® This constant is universal for all 1D maps with a single locally
quadratic maximum.



Renormalization

Figure: fﬁ(w) for increasing p, 2 < p < 4. § :



Renormalization (cont.)

Definition

Let py, be the periodic point of period 2 of f,, and let pj, be the point s.t.
f(0)) =pu Lu(z) == PZZ+PM(3U — pu). The renormalization of f, is
defined as (Rf,)(z) := Ly o fio L™ ().

® Rf, provides a magnified view of the local behavior.

® Observation: if z is a periodic point of period 2 of f,, then L(x) is a
fixed point of (Rf,)(x).

¢ Repeated renormalization leads to a sequence of bifurcation points

that we expected. Z



Section 3

Symbolic Dynamics



An Alternative Metric Space

Let ¥o :={s = (sos1---):s;=0o0r 1Vj} be the set of all bitstrings of

t
infinite length. Let Vs, t € Yo, d( Z |SZ |
=0

Proposition

d is a metric on Y.

Observation: s,t € Xo. If s; = ¢;Vi,0 <i < n, then d(s,t) <27 If
d(s,t) < 27", then s; = t;¥i,0 <1i < n.



The Shift Map o

Definition

0¥y — Yo,0(s08182 ) = (815283 ).

Proposition

o continuous.



Properties of o

Proposition

1. Number of periodic points of period n is 2.
2. Periodic points are dense in 5.
3. There exists dense orbit in Y.

Corollary

o is chaotic in Y.



Proof of Proposition

1. A periodic point of period n is in the form of
S0 Sn—180°""Sn—1--*, so there are 2" such periodic points.

2. We want Vt € 3o, e > 03 periodic point s : d(s,t) < e. Note
aM :s; =t,Y0 <i < M — d(s,t) < e. Take
s=(to---tayto---tar---).

3. We want 3s € ¥y : Vt € Xg, € > 03N : d(oV(s),t) < e. Note again
VedM : oV (s) = t;¥0 < i < M — d(o™ (s),t) < e. Denote sy to be
a concatenation of an enumeration of all bitstrings of length M.
Take s = concatenation of all sp;VM € N.



Section 4

Topological Conjugacy: u > 4



The Set A

Definition
Let A, = {2z €[0,1] : f{(x) € [0,1], f7*!(x) ¢ [0,1]}. Define

A:=00,1 - | ] An.
n=0

Definition
A set S is a Cantor set if it is closed, totally disconnected (contains no

intervals as connected subsets), and perfect (every point in S is an
accumulation point of all other points in S).

Proposition
A is a Cantor set for p > 4.



Proof of Cantor-ness

® (Closed: we start with a closed interval. At every iteration, an open
interval is removed (equivalent of taking the intersection with a
closed interval). Intersection of closed intervals are closed.

® Totally disconnected: we shall see this shortly.

® Perfect: suppose not. Then there exists isolated point p € A. Then
exists some i s.t. Vo € B2(p), fi(x) < 0. Thus, f/ is maximized at p,

so (f7)'(p) = 0. This implies that F(fi(p)) = 0 for some j < i. But

this means f,i(p) = 1/2, which is a contradiction because
j+1 A
w o (p) €A



Definitions

A function f: X — Y between two spaces X,Y is a homeomorphism if
1. is a bijection
2. is continuous
3. has continuous inverse

Let f: X = X, g:Y — Y. Then f, g are topologically conjugate if
there exists homeomorphism h : X — Y s.t. ho f =goh.



A Preliminary Theorem

Definition

Let S : A — X9 be the following function: z € A, S(z) = s¢sy - -, where
si = 0if fi(z) € Iy and s; = 1 if f}(z) € I, where

In={2€10,1/2] : fu(z) <1} and ) = {x € [1/2,1] : fu(z) < 1}.

Theorem

If u > 2+ /5, then S: A — ¥y is a homeomorphism.



Continuity of S
Proof

We will use the sequential criterion of continuity. Consider arbitrary
sequence (zp) C A with z,, = € A. We want S(z,) — S(z) € Xo, ie.,
Ve > 0,3IN :n > N — d(S(zp),S(z)) < e. Note that

d(S(zn),S(z)) < e IM : (S(xy))i = (S(x)):Vi < M (take M s.t.

2=M < ¢). This means that Vi < M, fi(xn) and f,(z) agree on whether
they are in Ip or I;. Let J; be the interval (either Iy or Iy) that f)(x) is
in. For each 7,0 < i < M, let us pick

€ >0:Vy: |y - f;(:v)| < €, fﬁ(mn) € Ji. In other words, pick some

€ > 0s.t. f,(zn) and f(z) agree on the interval. Note that f},
continuous everywhere Vi. Thus,

30; > 0: |y — | <& = |fi(y) — fi(x)] < &. Take § := ogilig}w d;. Because

Zp = 2, IN :n > N — |z, — x| <. Take this N. B



Continuity of 5!

Proof

We again use the sequential criterion of continuity. Consider arbitrary
sequence (y,) C Yo with gy, — y € X. Define x; := S~1(y;) € AVi and
x = S~ !(y); we want x; — x. Suppose not. Then there exists ¢ > 0 and
subsequence (zp, )k C (n)n s.t. Vk, |2y, — x| > €. Observe that
u>2+ V5= |fi(z)| > 1Vx € Iy U L. Then by MVT,

| fu(@n,) — fu(x)] > A|lzp, — |, for some A > 1. This implies

| fl (@) = fi(x)] > N2y, — x| > A, which is unbounded. Note that
Yn — y means that VM € N,IN :n >N - V0 <i < M, fu(zn) and
fﬁ(a:) agree on whether they are in Iy or ;. But this is a contradiction,
because for large enough M, VNdn > N s.t.

| @n) — £ (@)| > ten(lo) = len(7y). W



Alternative Proof for S—!

Proof

Note that A compact. By the Heine-Borel theorem, boundedness and
totally boundedness are equivalent on R™. Obviously, A is closed and
bounded. Recall that compact is equivalent to closed AND totally
bounded.

Recall from topology that a continuous bijection with compact domain
has continuous inverse. Done!



Bijection
Proof
Injectivity: Suppose S(z) = S(y) for ,y € A. Then Vn € N, f}(x) and
fl’}(y) agree on whether they are in Iy or I;. Suppose x # y. Then similar
the previous proof, we have |f}(zn,) — fi1 (@) > A"|2n, — 2] > A"
Contradiction.
Surjectivity: Define Isys,..s, = {T € A : x € Iy, fu(x) € Is,, -+, f}(z) €
I} = Iy N fi7 ' (Isy65.s,). By induction, Iy, s,...s, is closed and
nonempty. By continuity of f, f;l(-[slsz---sn) is closed. Note that I,
closed, so because intersection of closed sets is closed, I, ..., closed.
Note that f;l(lsls?..sn) = Ios,59--55, U L0s; 595, , POth of which are
nonempty, so Igys,...s, nonempty. Consider arbitrary

o

n=0

know that it only contains 1 element: f, Hy). m

y € X9, S(y) = (sos1 -+ ), we have ﬂ I5,...s, is closed. Moreover, we Z



Topological Conjugacy

Theorem

Sof=00S.

Proof
We will show f =S !1oc0S. Suppose z € A, S(x) = (s0s1---). Then
oo

S~ logoS(x)=8" s1--) = m I, ..., , which is obviously equal to

n=1
f(@).
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S as Topological Conjugate

® Due to the topological conjugacy between A and ¥y via S, all
dynamics properties on the two spaces area equivalent.

® Specifically, we have periodic points are dense in A, and there exists
dense orbit in A.

® Thus, we have f, chaotic in A for p > 2+ V5.

e This is actually true for p > 4, by first taking a homeomorphism
between the logistic map and the tent map, then proving chaos for
the tent map using a topological conjugacy between the tent map
and Y.



Questions?
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