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Section 1

Logic Refresher



Basic Notions From Logic

Definition
A formula is a string in a formal language. A sentence is a formula with
no free variables. A statement is a sentence with a definite truth value.

Definition
An argument is a sequence of statements. We say an argument is valid
if every statement deductively follows from previous statements, and
call it sound if it is valid and its premises hold.
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Propositional (or Zeroth-Order) Logic

Propositional Logic is the most basic form of symbolic logic; its language
is inductively defined by atomic propositions and truth functions.

Definition
A truth function is a function that takes truth values to truth values.
For example, a logical connective is a truth function since the truth of a
statement P ∧ Q depends solely on the truth values of the
substatements P and Q.
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Propositional (or Zeroth-Order) Logic

Formulae A ::= P propositions
| > top (true)
| ⊥ bottom (false)
| P ∧ Q conjunction
| P ∨ Q disjunction
| P ⇒ Q implication
| ¬P negation



First-Order Logic (FOL)

First-Order Logic extends propositional logic with predicates and
quantification over objects.

Definition
An object belongs to the domain of a theory, e.g. natural numbers in
number theory, sets in set theory, etc. A predicate can be thought of
like a function on objects: it takes in an object and outputs a truth
value depending on said object and the interpretation in the model.
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First-Order Logic (FOL)

Terms τ ::= x variables
Formulae A ::= P[τ1, . . . , τn] predicates

| > top (true)
| ⊥ bottom (false)
| P ∧ Q conjunction
| P ∨ Q disjunction
| P ⇒ Q implication
| ¬P negation
| ∀x.P[x] universal quantification
| ∃x.P[x] existential quantification



Intuitionistic vs. Classical Logic

• Truth is objectively real: Logical sentences have definite truth
values, even if we can’t (or don’t yet know how to) prove them.

• Truth is a mental construct: Truth is subjective and dependent
on the mind of the mathematician. Hence, a sentence is only true
or false when we can provide an explicit construction for an object
that witnesses its truth value.

In particular, Classical Logic admits the Law of Excluded Middle
whereas Intuitionistic Logic rejects it.



Section 2

A Bit of Proof Theory



Proof Theory?

Proof theory is the study of “formal” proofs as mathematical objects.
Historically, it stemmed out of a desire to reduce mathematics to a
syntactical game governed by axioms and inference rules.



Proof Theory?

In particular, it studies proof systems and their strengths:
• What is the “structure” of a proof?
• Can a particular proof system prove (derive) some sentence?
• Is there any extra “meaning”/“insight” we can get from a

particular proof?
This is in contrast to model theory, which studies the semantics of
mathematical theories, i.e. in what contexts are so-and-so sentences
true?



Proof Calculi

Definition (from the Pr∞f Wiki)
A proof system P for a formal language L comprises:

• Axioms and/or axiom schemata;
• Rules of inference for deriving theorems.

We write Γ `P ϕ if the formula ϕ is provable (or derivable) in P from a
set of assumptions Γ; that is, if there is some sequence of deductions
(governed by P) that starts at Γ and ends at ϕ.
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“Examples”

Hilbert System:
• Many axioms.
• Few inference rules (typically

only Modus Ponens).
• Reasoning is primarily justified

by axioms.
• Proofs consist of a sequence of

formulae, each of which either
is an axiom or follows from a
deduction.

Natural Deduction:
• Few (or no) axioms.
• “Natural” inference rules.
• Proofs are expressed by

inference, mimicking the
“natural” way of reasoning.

• Fitch-style proofs look similar
to those in a Hilbert system.
Gentzen-style proofs make
use of “proof trees” (à la CS
421).



Applications

• Formal verification of software systems;
• Proof automation in mathematics;
• Logic programming;
• Semantics for programming (and natural!) languages.



Section 3

(Fitch-Style) Natural Deduction for (Intuitionistic)
Propositional Logic



Idea/Motivation

• Truth tables don’t give us very much insight into why an argument
is true (and don’t really work for intuitionistic logics). More
importantly, verifying complex arguments becomes intractable!

• Arguments involving substituting logical equivalences are hard to
come up with, hard to follow, and can hide implicit assumptions.



Idea/Motivation

What if we instead focus on reasoning in the “natural” way?

One of Gentzen’s main motivations was to devise rules that
model mathematical reasoning as directly as possible, although
clearly in much more detail than in a typical mathematical ar-
gument.

— Frank Pfenning (2023)



Language

Formulae A ::= P propositions
| > top (true)
| ⊥ bottom (false)
| P ∧ Q conjunction
| P ∨ Q disjunction
| P ⇒ Q implication
| ¬P negation



Reiteration

m A

n A R, m



Conjunction
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n B ∧E, m
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Negation

m A

n ⊥
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Negation

m A

n ⊥
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Negation

m A

n ⊥
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Explosion

m ⊥

n A ⊥E, m



Subsection 1

Examples



A ⇒ (B ⇒ C ) ` (A ∧ B) ⇒ C

1 A ⇒ (B ⇒ C)

2 A ∧ B

3 A ∧E, 2

4 B ∧E, 2

5 B ⇒ C ⇒E, 1, 3

6 C ⇒E, 5, 4

7 (A ∧ B) ⇒ C ⇒I, 2–6



P ∧ (Q ∨ R),P ⇒ ¬R ` Q ∨ E

1 P ∧ (Q ∨ R)

2 P ⇒ ¬R

3 P ∧E, 1

4 Q ∨ R ∧E, 1

5 ¬R ⇒E, 2, 3

6 Q

7 Q ∨ E ∨I, 6

8 R

9 ⊥ ¬E, 5, 8

10 Q ∨ E ⊥E, 9

11 Q ∨ E ∨E, 4, 6–7, 8–10
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Extending Natural Deduction to FOL



Language

Terms τ ::= x variables
Formulae A ::= P[τ1, . . . , τn] predicates

| > top (true)
| ⊥ bottom (false)
| P ∧ Q conjunction
| P ∨ Q disjunction
| P ⇒ Q implication
| ¬P negation
| ∀x.P[x] universal quantification
| ∃x.P[x] existential quantification



Universal Quantifier

m a

n P[a/x]

l ∀x.P[x] ∀I, m–n

m ∀x.P[x]

n P[a/x] ∀E, m
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Existential Quantifier
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Subsection 1

Examples



∀x.Fx ⇒ Gx,∃x.Fx ` ∃x.Gx

1 ∀x.Fx ⇒ Gx

2 ∃x.Fx

3 Fa

4 Fa ⇒ Ga ∀E, 1

5 Ga ⇒E, 4, 3

6 ∃x.Gx ∃I, 5

7 ∃x.Gx ∃E, 2, 3–5
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“Upgrading” to Classical Logic



Excluded Middle (and Related Axioms)

i A

j B

k ¬A

l B

m B LEM, i–j, k–l

m ¬¬A

n A DNE, m

m ¬A

n ⊥

l A IP, m–n



Section 6

Exercises



LEM ` DNE

1 ¬¬P

2 P

3 P R, 2

4 ¬P

5 ⊥ ¬E, 1, 4

6 P ⊥E, 5

7 P LEM, 2–3, 4–6



LEM ` DNE

1 ¬¬P

2 P

3 P R, 2

4 ¬P

5 ⊥ ¬E, 1, 4

6 P ⊥E, 5

7 P LEM, 2–3, 4–6



DNE ` IP

1 ¬P ⇒ ⊥

2 ¬P

3 ⊥ ⇒E, 1, 2

4 ¬¬P ¬I, 2–3

5 P DNE, 4



DNE ` IP

1 ¬P ⇒ ⊥

2 ¬P

3 ⊥ ⇒E, 1, 2

4 ¬¬P ¬I, 2–3

5 P DNE, 4



IP ` LEM

1 ¬(P ∨ ¬P)

2 ¬P

3 P ∨ ¬P ∨I, 2

4 ⊥ ¬E, 1, 3

5 P IP, 2–4

6 P ∨ ¬P ∨I, 5

7 ⊥ ¬E, 1, 6

8 P ∨ ¬P IP, 1–7



IP ` LEM

1 ¬(P ∨ ¬P)

2 ¬P

3 P ∨ ¬P ∨I, 2

4 ⊥ ¬E, 1, 3

5 P IP, 2–4

6 P ∨ ¬P ∨I, 5

7 ⊥ ¬E, 1, 6

8 P ∨ ¬P IP, 1–7



∀x.¬Mx ∨ Ljx,∀x.Bx ⇒ Ljx,∀x.Mx ∨ Bx ` ∀x.Ljx

1 ∀x.¬Mx ∨ Ljx

2 ∀x.Bx ⇒ Ljx

3 ∀x.Mx ∨ Bx

4 ¬Ma ∨ Lja ∀E, 1

5 Ba ⇒ Lja ∀E, 2

6 Ma ∨ Ba ∀E, 3

7 Lja

8 Lja R, 7

9 ¬Ma

10 Ma

11 ⊥ ¬E, 9, 10

12 Lja ⊥E, 11

13 Ba

14 Lja ⇒E, 5, 13

15 Lja ∨E, 3, 10–12, 13–14

16 Lja ∨E, 1, 9–15, 7–8

17 ∀x.Ljx ∀I, 16
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Questions?



There’s this thing which I like to call the . . . “Holy Trinity”
here of computer science[:] . . . the correspondences between
proof theory, which is . . . the theory of logic and proofs; algebra
and category theory; and then the subject in the computer science
side[, which are] programs, or type theory.

— Robert Harper (2012)
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