SORTING

Jeff Erickson
SIGMA / SIAM
April 7, 2025

GINORST

cEeffiJknors
AAGIIMMSS/
02257, Ailpr

Sorting

» Glven an array A[1...n], permute 1t so that A[1] < A[1+1] for all 1.

A[L|GIOIR[T|T|H[M|S
A|GIH|T|L[MI[O|R[S|T

Fig, 3.—Sorting Machine.

Hollerith's Electric Sorting and Tabulating Machine.

[Hollerith 1890] [Knuth 197/3/1998]

Familiar sorting algorithms

» BubbleSort — O(n2) time

» SelectionSort — O(n2) time

» InsertionSort — O(n2) time

» MergeSort — O(n log n) time
» HeapSort — O(n log n) time

» QuickSort — It's complicated.

Quicksort 'Hoare 1959]

A[L|[G|O|R|I|T[H[M|S » Choose a pivot item p

partition

AJL|GIT|H[M|OJR|T[S

» Partition array into 1items <p, =p, >p

» Recursively sort prefix and suffix

OIR|T|S

recurse! recurse!

» Worst pivot: min or max = 0(n2) time

O[R[S[T|) Best pivot: median = O(n log n) time

AlL|GIT|H[M|OIR|T[S

Quicksort recursion = BST

» Quicksort generates a binary tree of recursive calls.

» If we record the pivot at each node of this recursion tree, the
result 1s a binary search tree!

A|L|GIORIT|TIHIM|S
L| 1| |[Oo[R[S R

Quicksort recursion = BST

» If we record the pivot at each node of this recursion tree, the
result 1s a binary search tree!

» #comparisons = sum of node depths

A|L|GIORIT|TIHIM|S

OIR|T|S
L R

o

J>l
-
ERE
;q
0p
o
—

o]

Tree-insertion sort

TreeSort(A[l..n]):
T <« new self-balancing binary tree
fori < 1ton
insert A[i] into T
read A[1..n] from an in-order traversal of T

With any self-balancing binary search tree (AVL, red-black, splay,
scapegoat, treaps, etc.), this algorithm runs in O(n log n) time.*

» *with high probability for randomized BSTs (treaps, skip lists, etc.)

Trea ps [Seidel Aragon 1996]

» Every node has a search key (given by the user) and a random
priority (generated at insertion time).

» A treap 1s simultaneously a binary search tree for the search keys
and a min-heap for the priorities.

10

Trea ps [Seidel Aragon 1996]

» Equivalently, insert keys into a standard binary search tree in
Increasing priority (= random) order.

» Random priorities guarantee depth O(log n) with high probability.

11

Randomized quicksort

» At each level of recursion, choose pivot uniformly at random

» The resulting recursion tree 1s a treap! So randomized quicksort
runs 1n O(n log n) time with high probability!

A|L|GIORIT|TIHIM|S

12

Nuts and bolts

13

Nuts and bolts

[Rawlins 1992]

We wish to sort a bag of # nuts and 7 bolts by size in the dark. We
can compare the sizes of a nut and a bolt by attempting to screw one
into the other. This operation tells us that either the nut is bigger
than the bolt; the bolt is bigger than the nut; or they are the same
size (and so fit together). Because it is dark we are not allowed to

compare nuts directly or bolts directly.
How many fitting operations do we need to sort the nuts and bolts

in the worst case?

O(n2) steps 1s straightforward. (Hint: Find the largest bolt.)

Can we do better?

14

Nuts and bolts

Randomized quicksort! O(n log n) steps with high probability

» Choose a random pivot bolt

» Use pivot bolt to partition the nuts

» Use matching pivot nut to partition the bolts
» Recursively sort smaller nuts and bolts

» Recursively match larger nuts and bolts

Randomized mergesort: also O(n log n) with high probability

15

Deterministic nuts and bolts

» [Rawlins 1992]: problem first posed

» [Alon, Blum, Fiat, Kannan, Naor, Ostrovsky 1994]: O(n log4 n)
» [Bradford and Fleischer 1995]: O(n log2 n)

» [Bradford 1995] [Komlos Ma Szemerédi 1996]: O(n log n)

However, all of these algorithms use expander graphs, which are
easy to construct randomly, but hard to construct
deterministically.

These results are best viewed as noncontructive proofs that fast
deterministic algorithms exist!

16

Open question

Is there a deterministic algorithm that
matches nuts and bolts 1n O(n log n) time?

17

Vibesort

18

Vibesort

[Fung 2021]

VibeSort(A[1..n]):

fori<—1ton
forj < 1ton
if A[1] < A[J]
swap A[1] & A[j]

This 1s obviously wrong.

19

Vibesort

[Fung 2021]

VibeSort(A[1..n]):
fori < 1ton
forj < 1ton

if Al1] < A[J]

SelectionSort(A[1..n]):
fori < 1ton
for j < i+1ton
if A1] > A[J]
swap A[1] & A[j]

swap A[1] « A[]

InsertionSort(A[1..n]):

fori < 1ton
forj « 1to 1-1
if A[1] < A[J]
swap A[1] & A}

20

Vibesort

[Fung 2021]

VibeSort(A[1..n]):
fori<—1ton
forj < 1ton
if A[1] < A[J]
swap A[1] & A[j]

This 1s obviously wrong.

This 1s actually correct!

21

Vibesart [Fung 2021]

VibeSort(A[1..n]):

fori —1ton A|G|H|T|L[MIO|R|TS

forj < 1ton

if Ali] < A[j] AlG|H|[1|L[M[O[R]S|T]

swap A[1] & A[j]

» After 1 1terations, A[1] 1s the largest item 1n the array

» During 1th 1teration (except 1=1) the suffix A[1+1..n] does not change.
» After 1 1terations of the outer loop, the prefix A[1..1] 1s sorted.

» It’s just insertion sort!

22

“Vibesart” [Fung 2021]

There is nothing good about this algorithm. It is slow — the algorithm
obviously runs in ©(n?) time, whether worst-case, average-case or best-case.
It unnecessarily compares all pairs of positions, twice (but see Section 3).
There seems to be no intuition behind it, and its correctness is not entirely
obvious. You certainly do not want to use it as a first example to introduce
students to sorting algorithms. It is not stable, does not work well for
external sorting, cannot sort inputs arriving online, and does not benefit
from partially sorted inputs. Its only appeal may be its simplicity, in terms
of lines of code and the “symmetry” of the two loops.

It is difficult to imagine that this algorithm was not discovered before,
but we are unable to find any references to it.

23

Harmonic exchange

RECURS\ON

lp\es kk onés 4

LCPERTEE

smb ¢ -ComMICS.com

24

Random QXChange [Olesker-Taylor 2023]

RandExSort(A[1 .. n]):
fork < 1to N
choose random indices 1< J
if A[1] > A[J]
swap A[i] & A[j]

For large enough N, this algorithm sorts with
high probability, where “large enough” depends
on the probability distribution of pairs (1, J).

25

Random exchange

[Olesker-Taylor 2025]

RandExSort(A[1 .. n]):
fork < 1to N

if A[1] > A[J]
swap A[i] & A[j]

Uniform: PrJi, j] = 2/n(n-1)
Adjacent: Pr[i, i+1] = 1/(n-1)

Harmonic: PrJi, j] « 1/(j-i)

choose random indices 1< J

N = O(n< log n)
N = O(n2)
N = O(n logZn)

26

Harmonic intuition

[Olesker-Taylor 2025]

ANSWERING
THE
MATH PROBLEM

i .
4)
.
-

S
_ I —
N s \
o — \
< .y N\
e <= - N
.
~

27

Random exchange intuition (oesker-Tayior 2625

» Uniform: In each iteration, each item is moved directly to its
correct position with probability ©(1/n2). Other moves don’t help.

» Adjacent: Each iteration moves two items at most one step
closer to their correct positions; total distance could be ©(n32).

» Harmonic: “On average, each iteration moves two items roughly
halfway to their correct positions.”

28

Harmanic intu'ition [Olesker-Taylor 2025]

We actually need Prl1, |1 ~ 1/(J-1)(n In n) so that probabilities sum to 1.

1
E —— ~nH,_; ~nlnn
— 7 —1
1<j

This 1s the same analysis as randomized quicksort!

29

Harmanic intu'ition [Olesker-Taylor 2025]

» Suppose the input array A[1..n] contains exactly n/2 Os and n/2 1s.

» Consider a single “bad” 11n the bottom quarter A[1...n/4].

sf1jrjols{r|sf1fr]s{s|tjsfr]s|t|v|sfrs|s|s|1[1]1]1[s|s[1]s]s] 1

» Each 1teration moves that bad 1 out of A[1...n/4] with probabilty
1/0(n log n).

» SO on average we need O(n log n) iterations to move that bad 1 out of
A[1..n/4]

30

Harmanic intu'ition [Olesker-Taylor 2025]

» With high probability, after O(n log2 n) iterations, A[1...n/4] contains
only Os, and symmetrically, A[3n/4+1..n] contains only 1s.

s[1[1]sls|t|s[1]1[s|s|1s]1[s|1]1]s]1|s|s|s]1]1]1]]s]s|1]s|o1

O(n log? n) whp

s|s|s|o|s|s|s|s|s|t|s|ss]t[s|1|os]t|r]1|s]t]r]1]1]1]1[]1]1]1

31

Harmcnic intu'itiOn [Olesker-Taylor 2025}

» Now we only need to recursively sort the middle half A[n/4+1 .. 3n/4]!

SAFELY ENDANGERED

SWEET JESUS, POOH)
THAT'S NOT HONEY
tJ '
!

(((((((((((((((

32

Harmanic intu'ition [Olesker-Taylor 2025]

» The probabilities are scale-invariant. Moving a bad 1 out of the
bottom quarter of A[n/4+1 .. 3n/4] takes another O(n log n) 1terations.

» SO every O(n log? n) 1iterations halve the unsorted part of the array.

» Recursion depth = O(log n), so the overall sorting time 1s O(n log3 n).

33

Harmonic intuition

[Olesker-Taylor 2025]

of1[1]s|s|1|of1]1[s|s|1]s]1|s|1]1]s|r]s|s]s]]1]]1]s|s]1]s]o] 1

O(n log? n) whp

o|1jools{r|sfi]s{s|1[1]1[s|1]1

O(n log® n) whp

O(n log? n) whp

o|1]1lo

34

Harmonic exchange

[Olesker-Taylor 2025]

The formal details, including removing the extra log factor, are

unfortuntely complicated.

‘.‘)“ : -J‘ ﬂ_\ -\."“

- -
. \\ =y

. N
R R

A e

)
.
i

Proof c B T

-

-
- -

-
y u -

'S Y

as N =

35

Open questions [Olesker-Taylor 2625]

» Is there a simpler analysis? Please?
» Do other (simpler) distributions yield O(n log2 n) time?

» Does any distribution yield O(n log n) time?

» [Goodrich 2014] describes a data-oblivious algorithm that sorts using
only O(n log n) comparisons, but 1t uses expanders, so 1t does not run 1n
O(n log n) worst-case time.

36

A[L|G[O[R|I|TIHIM|S

A[GIH[T|LIM]|OIR|S|T

