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Sorting

‣Given an array A[1...n], permute it so that A[i] < A[i+1] for all i.
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[Hollerith 1890] [Knuth 1973/1998]



Familiar sorting algorithms

‣ BubbleSort — O(n2) time 

‣ SelectionSort — O(n2) time 

‣ InsertionSort — O(n2) time 

‣MergeSort — O(n log n) time 

‣HeapSort — O(n log n) time 

‣QuickSort — It’s complicated.
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Quicksort

‣Choose a pivot item p 

‣ Partition array into items <p, =p, >p 

‣ Recursively sort prefix and suffix 

‣Worst pivot: min or max ⇒ Θ(n2) time 

‣ Best pivot: median ⇒ Θ(n log n) time
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[Hoare 1959]
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partition

recurse! recurse!



Quicksort recursion = BST

‣Quicksort generates a binary tree of recursive calls. 

‣ If we record the pivot at each node of this recursion tree, the 
result is a binary search tree!

7

RA L G O I T H M S

A L G O RI TH S

O R SA LG I

A L O S

M

TH

RG I

A L O S



Quicksort recursion = BST

‣ If we record the pivot at each node of this recursion tree, the 
result is a binary search tree! 

‣ #comparisons = sum of node depths
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Tree-insertion sort

With any self-balancing binary search tree (AVL, red-black, splay, 
scapegoat, treaps, etc.), this algorithm runs in O(n log n) time.* 

‣ *with high probability for randomized BSTs (treaps, skip lists, etc.)
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TreeSort(A[1..n]): 
T ← new self-balancing binary tree 
for i ← 1 to n 

insert A[i] into T 
read A[1..n] from an in-order traversal of T



Treaps

‣ Every node has a search key (given by the user) and a random 
priority (generated at insertion time). 

‣ A treap is simultaneously a binary search tree for the search keys 
and a min-heap for the priorities.
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[Seidel Aragon 1996]



Treaps

‣ Equivalently, insert keys into a standard binary search tree in 
increasing priority (= random) order. 

‣ Random priorities guarantee depth O(log n) with high probability.
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[Seidel Aragon 1996]



Randomized quicksort

‣ At each level of recursion, choose pivot uniformly at random 

‣ The resulting recursion tree is a treap!  So randomized quicksort 
runs in O(n log n) time with high probability!
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Nuts and bolts
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Nuts and bolts
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[Rawlins 1992]

O(n2) steps is straightforward.  (Hint: Find the largest bolt.) 

Can we do better?



Nuts and bolts

Randomized quicksort!  O(n log n) steps with high probability 

‣ Choose a random pivot bolt 

‣ Use pivot bolt to partition the nuts 

‣ Use matching pivot nut to partition the bolts 

‣ Recursively sort smaller nuts and bolts 

‣ Recursively match larger nuts and bolts 

Randomized mergesort: also O(n log n) with high probability
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Deterministic nuts and bolts

‣ [Rawlins 1992]: problem first posed 

‣ [Alon, Blum, Fiat, Kannan, Naor, Ostrovsky 1994]: O(n log4 n) 

‣ [Bradford and Fleischer 1995]: O(n log2 n) 

‣ [Bradford 1995] [Komlos Ma Szemerédi 1996]: O(n log n)
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However, all of these algorithms use expander graphs, which are 
easy to construct randomly, but hard to construct 
deterministically. 

These results are best viewed as noncontructive proofs that fast 
deterministic algorithms exist!



Open question

Is there a deterministic algorithm that 
matches nuts and bolts in O(n log n) time?
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Vibesort
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Vibesort
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VibeSort(A[1..n]): 
for i ← 1 to n 

for j ← 1 to n 
if A[i] < A[j] 

swap A[i] ↔︎ A[j]

[Fung 2021]

This is obviously wrong.



Vibesort
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VibeSort(A[1..n]): 
for i ← 1 to n 

for j ← 1 to n 
if A[i] < A[j] 

swap A[i] ↔︎ A[j]

SelectionSort(A[1..n]): 
for i ← 1 to n 

for j ← i+1 to n 
if A[i] > A[j] 

swap A[i] ↔︎ A[j]

[Fung 2021]

InsertionSort(A[1..n]): 
for i ← 1 to n 

for j ← 1 to i–1 
if A[i] < A[j] 

swap A[i] ↔︎ A[j]



Vibesort
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VibeSort(A[1..n]): 
for i ← 1 to n 

for j ← 1 to n 
if A[i] < A[j] 

swap A[i] ↔︎ A[j]

[Fung 2021]

This is obviously wrong.

This is actually correct!



Vibesort

‣ After i iterations, A[i] is the largest item in the array 

‣During ith iteration (except i=1) the suffix A[i+1..n] does not change. 

‣ After i iterations of the outer loop, the prefix A[1..i] is sorted. 

‣ It’s just insertion sort!
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VibeSort(A[1..n]): 
for i ← 1 to n 

for j ← 1 to n 
if A[i] < A[j] 

swap A[i] ↔︎ A[j]

[Fung 2021]
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“Vibesort”
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[Fung 2021]



Harmonic exchange
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Random exchange

For large enough N, this algorithm sorts with 
high probability, where “large enough” depends 

on the probability distribution of pairs (i, j).
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RandExSort(A[1 .. n]): 
for k ← 1 to N 

choose random indices i < j 
if A[i] > A[j] 

swap A[i] ↔︎ A[j]

[Olesker-Taylor 2025]



Random exchange
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RandExSort(A[1 .. n]): 
for k ← 1 to N 

choose random indices i < j 
if A[i] > A[j] 

swap A[i] ↔︎ A[j]

[Olesker-Taylor 2025]

Uniform: Pr[i, j] = 2/n(n–1) N = Θ(n2 log n)

Adjacent: Pr[i, i+1] = 1/(n–1) N = Θ(n2)

Harmonic: Pr[i, j] ∝ 1/(j–i) N = Θ(n log2 n)



Harmonic intuition
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[Olesker-Taylor 2025]



Random exchange intuition

‣Uniform: In each iteration, each item is moved directly to its 

correct position with probability Θ(1/n2).  Other moves don’t help. 

‣Adjacent: Each iteration moves two items at most one step 

closer to their correct positions; total distance could be Θ(n2). 

‣Harmonic: “On average, each iteration moves two items roughly 
halfway to their correct positions.”
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[Olesker-Taylor 2025]



Harmonic intuition

We actually need Pr[i, j] ~ 1/(j–i)(n ln n) so that probabilities sum to 1. 

This is the same analysis as randomized quicksort!
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[Olesker-Taylor 2025]



Harmonic intuition

‣Suppose the input array A[1..n] contains exactly n/2 0s and n/2 1s. 

‣ Consider a single “bad” 1 in the bottom quarter A[1...n/4]. 

‣ Each iteration moves that bad 1 out of A[1...n/4] with probabilty 
1/O(n log n). 

‣ So on average we need O(n log n) iterations to move that bad 1 out of 
A[1..n/4]
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[Olesker-Taylor 2025]

00 1 1 0 1 0 1 1 10 0 0 1 0 1 01 0 1 0 0 1 1 1 01 0 01 10



Harmonic intuition

‣With high probability, after O(n log2 n) iterations, A[1...n/4] contains 
only 0s, and symmetrically, A[3n/4+1..n] contains only 1s.
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[Olesker-Taylor 2025]

00 110 10 11 10 0 0 10 1 0 10 100 1 110 10 0 1 10

O(n log2 n) whp

00 110 10 11 10 0 0 10 1 0 10 100 1 110 10 0 1 10

O(n log2 n) whp

00 1 1 0 1 0 1 1 10 0 0 1 0 1 01 0 1 0 0 1 1 1 01 0 01 10

00 1 10 10 11 10 0 0 1 0 1 0 10 10 0 1 110 10 0 1 10

O(n log2 n) whp



Harmonic intuition

‣ Now we only need to recursively sort the middle half A[n/4+1 .. 3n/4]!
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[Olesker-Taylor 2025]



Harmonic intuition

‣ The probabilities are scale-invariant.  Moving a bad 1 out of the 
bottom quarter of A[n/4+1 .. 3n/4] takes another O(n log n) iterations. 

‣ So every O(n log2 n) iterations halve the unsorted part of the array. 

‣ Recursion depth = O(log n), so the overall sorting time is O(n log3 n).
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[Olesker-Taylor 2025]



Harmonic intuition
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[Olesker-Taylor 2025]

00 110 10 11 10 0 0 10 1 0 10 100 1 110 10 0 1 10

O(n log2 n) whp

00 110 10 11 10 0 0 10 1 0 10 100 1 110 10 0 1 10

O(n log2 n) whp

00 1 1 0 1 0 1 1 10 0 0 1 0 1 01 0 1 0 0 1 1 1 01 0 01 10

00 1 10 10 11 10 0 0 1 0 1 0 10 10 0 1 110 10 0 1 10

O(n log2 n) whp



Harmonic exchange

The formal details, including removing the extra log factor, are 
unfortuntely complicated.
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[Olesker-Taylor 2025]

MATH



Open questions

‣ Is there a simpler analysis? Please? 

‣Do other (simpler) distributions yield O(n log2 n) time? 

‣Does any distribution yield O(n log n) time? 

‣ [Goodrich 2014] describes a data-oblivious algorithm that sorts using 
only O(n log n) comparisons, but it uses expanders, so it does not run in 
O(n log n) worst-case time.
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[Olesker-Taylor 2025]
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