
SORTING

Jeff Erickson
SIGMA / SIAM

April 7, 2025

GINORST

cEeffiJknors
AAGIIMMSS/

02257,Ailpr

Sorting

‣Given an array A[1...n], permute it so that A[i] < A[i+1] for all i.

3

RA L G O I T H M S

RA LG OI TH M S

4

[Hollerith 1890] [Knuth 1973/1998]

Familiar sorting algorithms

‣ BubbleSort — O(n2) time

‣ SelectionSort — O(n2) time

‣ InsertionSort — O(n2) time

‣MergeSort — O(n log n) time

‣HeapSort — O(n log n) time

‣QuickSort — It’s complicated.

5

Quicksort

‣Choose a pivot item p

‣ Partition array into items <p, =p, >p

‣ Recursively sort prefix and suffix

‣Worst pivot: min or max ⇒ Θ(n2) time

‣ Best pivot: median ⇒ Θ(n log n) time

6

[Hoare 1959]

RA L G O I T H M S

RA L G OI TH M S

RA L G OI TH S

RA LG OI TH S

RA L G OI TH M S

partition

recurse! recurse!

Quicksort recursion = BST

‣Quicksort generates a binary tree of recursive calls.

‣ If we record the pivot at each node of this recursion tree, the
result is a binary search tree!

7

RA L G O I T H M S

A L G O RI TH S

O R SA LG I

A L O S

M

TH

RG I

A L O S

Quicksort recursion = BST

‣ If we record the pivot at each node of this recursion tree, the
result is a binary search tree!

‣ #comparisons = sum of node depths

8

RA L G O I T H M S

A L G O RI TH S

O R SA LG I

A L O S

M

TH

RG I

A L O S

Tree-insertion sort

With any self-balancing binary search tree (AVL, red-black, splay,
scapegoat, treaps, etc.), this algorithm runs in O(n log n) time.*

‣ *with high probability for randomized BSTs (treaps, skip lists, etc.)

9

TreeSort(A[1..n]):
T ← new self-balancing binary tree
for i ← 1 to n

insert A[i] into T
read A[1..n] from an in-order traversal of T

Treaps

‣ Every node has a search key (given by the user) and a random
priority (generated at insertion time).

‣ A treap is simultaneously a binary search tree for the search keys
and a min-heap for the priorities.

10

[Seidel Aragon 1996]

Treaps

‣ Equivalently, insert keys into a standard binary search tree in
increasing priority (= random) order.

‣ Random priorities guarantee depth O(log n) with high probability.

11

[Seidel Aragon 1996]

Randomized quicksort

‣ At each level of recursion, choose pivot uniformly at random

‣ The resulting recursion tree is a treap! So randomized quicksort
runs in O(n log n) time with high probability!

12

RA L G O I T H M S

A L G O RI TH S

O R SA LG I

A L O S

M

TH

RG I

A L O S

Nuts and bolts

13

Nuts and bolts

14

[Rawlins 1992]

O(n2) steps is straightforward. (Hint: Find the largest bolt.)

Can we do better?

Nuts and bolts

Randomized quicksort! O(n log n) steps with high probability

‣ Choose a random pivot bolt

‣ Use pivot bolt to partition the nuts

‣ Use matching pivot nut to partition the bolts

‣ Recursively sort smaller nuts and bolts

‣ Recursively match larger nuts and bolts

Randomized mergesort: also O(n log n) with high probability

15

Deterministic nuts and bolts

‣ [Rawlins 1992]: problem first posed

‣ [Alon, Blum, Fiat, Kannan, Naor, Ostrovsky 1994]: O(n log4 n)

‣ [Bradford and Fleischer 1995]: O(n log2 n)

‣ [Bradford 1995] [Komlos Ma Szemerédi 1996]: O(n log n)

16

However, all of these algorithms use expander graphs, which are
easy to construct randomly, but hard to construct
deterministically.

These results are best viewed as noncontructive proofs that fast
deterministic algorithms exist!

Open question

Is there a deterministic algorithm that
matches nuts and bolts in O(n log n) time?

17

Vibesort

18

Vibesort

19

VibeSort(A[1..n]):
for i ← 1 to n

for j ← 1 to n
if A[i] < A[j]

swap A[i] ↔︎ A[j]

[Fung 2021]

This is obviously wrong.

Vibesort

20

VibeSort(A[1..n]):
for i ← 1 to n

for j ← 1 to n
if A[i] < A[j]

swap A[i] ↔︎ A[j]

SelectionSort(A[1..n]):
for i ← 1 to n

for j ← i+1 to n
if A[i] > A[j]

swap A[i] ↔︎ A[j]

[Fung 2021]

InsertionSort(A[1..n]):
for i ← 1 to n

for j ← 1 to i–1
if A[i] < A[j]

swap A[i] ↔︎ A[j]

Vibesort

21

VibeSort(A[1..n]):
for i ← 1 to n

for j ← 1 to n
if A[i] < A[j]

swap A[i] ↔︎ A[j]

[Fung 2021]

This is obviously wrong.

This is actually correct!

Vibesort

‣ After i iterations, A[i] is the largest item in the array

‣During ith iteration (except i=1) the suffix A[i+1..n] does not change.

‣ After i iterations of the outer loop, the prefix A[1..i] is sorted.

‣ It’s just insertion sort!

22

VibeSort(A[1..n]):
for i ← 1 to n

for j ← 1 to n
if A[i] < A[j]

swap A[i] ↔︎ A[j]

[Fung 2021]

RA L G O I T H M S

OT A G L I R H M SOTA G L I R H M S

OT A G L I R H M SOTA G L I R H M S

OGA T L I R H M S

OGA T L I R H M S

OGA TL I R H M S

OGA L T I R H M S

OGA TL I R H M S

OGA TL I R H M S

LGA OI T R H M S

LGA OI T R H M S

LGA OI R T H M S

LGA OI R T H M S

LGA OI R TH M S

LGA OI R TH M S

LGA OI R TH M S

LGA OI R TH M S

LGA OI R SH M T

“Vibesort”

23

[Fung 2021]

Harmonic exchange

24

Random exchange

For large enough N, this algorithm sorts with
high probability, where “large enough” depends

on the probability distribution of pairs (i, j).

25

RandExSort(A[1 .. n]):
for k ← 1 to N

choose random indices i < j
if A[i] > A[j]

swap A[i] ↔︎ A[j]

[Olesker-Taylor 2025]

Random exchange

26

RandExSort(A[1 .. n]):
for k ← 1 to N

choose random indices i < j
if A[i] > A[j]

swap A[i] ↔︎ A[j]

[Olesker-Taylor 2025]

Uniform: Pr[i, j] = 2/n(n–1) N = Θ(n2 log n)

Adjacent: Pr[i, i+1] = 1/(n–1) N = Θ(n2)

Harmonic: Pr[i, j] ∝ 1/(j–i) N = Θ(n log2 n)

Harmonic intuition

27

[Olesker-Taylor 2025]

Random exchange intuition

‣Uniform: In each iteration, each item is moved directly to its

correct position with probability Θ(1/n2). Other moves don’t help.

‣Adjacent: Each iteration moves two items at most one step

closer to their correct positions; total distance could be Θ(n2).

‣Harmonic: “On average, each iteration moves two items roughly
halfway to their correct positions.”

28

[Olesker-Taylor 2025]

Harmonic intuition

We actually need Pr[i, j] ~ 1/(j–i)(n ln n) so that probabilities sum to 1.

This is the same analysis as randomized quicksort!

29

[Olesker-Taylor 2025]

Harmonic intuition

‣Suppose the input array A[1..n] contains exactly n/2 0s and n/2 1s.

‣ Consider a single “bad” 1 in the bottom quarter A[1...n/4].

‣ Each iteration moves that bad 1 out of A[1...n/4] with probabilty
1/O(n log n).

‣ So on average we need O(n log n) iterations to move that bad 1 out of
A[1..n/4]

30

[Olesker-Taylor 2025]

00 1 1 0 1 0 1 1 10 0 0 1 0 1 01 0 1 0 0 1 1 1 01 0 01 10

Harmonic intuition

‣With high probability, after O(n log2 n) iterations, A[1...n/4] contains
only 0s, and symmetrically, A[3n/4+1..n] contains only 1s.

31

[Olesker-Taylor 2025]

00 110 10 11 10 0 0 10 1 0 10 100 1 110 10 0 1 10

O(n log2 n) whp

00 110 10 11 10 0 0 10 1 0 10 100 1 110 10 0 1 10

O(n log2 n) whp

00 1 1 0 1 0 1 1 10 0 0 1 0 1 01 0 1 0 0 1 1 1 01 0 01 10

00 1 10 10 11 10 0 0 1 0 1 0 10 10 0 1 110 10 0 1 10

O(n log2 n) whp

Harmonic intuition

‣ Now we only need to recursively sort the middle half A[n/4+1 .. 3n/4]!

32

[Olesker-Taylor 2025]

Harmonic intuition

‣ The probabilities are scale-invariant. Moving a bad 1 out of the
bottom quarter of A[n/4+1 .. 3n/4] takes another O(n log n) iterations.

‣ So every O(n log2 n) iterations halve the unsorted part of the array.

‣ Recursion depth = O(log n), so the overall sorting time is O(n log3 n).

33

[Olesker-Taylor 2025]

Harmonic intuition

34

[Olesker-Taylor 2025]

00 110 10 11 10 0 0 10 1 0 10 100 1 110 10 0 1 10

O(n log2 n) whp

00 110 10 11 10 0 0 10 1 0 10 100 1 110 10 0 1 10

O(n log2 n) whp

00 1 1 0 1 0 1 1 10 0 0 1 0 1 01 0 1 0 0 1 1 1 01 0 01 10

00 1 10 10 11 10 0 0 1 0 1 0 10 10 0 1 110 10 0 1 10

O(n log2 n) whp

Harmonic exchange

The formal details, including removing the extra log factor, are
unfortuntely complicated.

35

[Olesker-Taylor 2025]

MATH

Open questions

‣ Is there a simpler analysis? Please?

‣Do other (simpler) distributions yield O(n log2 n) time?

‣Does any distribution yield O(n log n) time?

‣ [Goodrich 2014] describes a data-oblivious algorithm that sorts using
only O(n log n) comparisons, but it uses expanders, so it does not run in
O(n log n) worst-case time.

36

[Olesker-Taylor 2025]

RA L G O I T H M S

RA LG OI TH M S

Thank you!

